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Résumé

Dans ce mémoire, nous rappelons certaines notions de 1’analyse convexe utiles a 1’étude
des problemes d’optimisation. Pour un probleme paramétrique donné, nous déterminons
son dual paramétrique a 1’aide de la perturbation horizontale de la fonction objectif. Nous
¢tablissons des conditions de qualification d’intériorité garantissant la dualité forte entre
les deux problemes. Nous donnons ensuite la version duale des résultats obtenus. Ces
résultats de dualité sont ensuite appliqués au cas particulier de la minimisation du maxi-
mum de deux fonctions convexes.

Dans la pratique, les données d’un probleme d’optimisation sont soumises a des erreurs de
modélisation ou de mesure, ce qui nous amene a considérer un probléme d’optimisation
convexe conique a données incertaines. Par une approche épigraphique, nous établissons
la dualité forte robuste pour ce probleme. Nous terminons ce mémoire par 1’étude d’un
probleme d’optimisation quadratique, a données incertaines dans un ensemble borné.
Nous caractérisons I’ensemble des solutions optimales robustes dans les cas homogene

et non homogene sous certaines conditions.
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Abstract

In this thesis, we recall some notions of convex analysis which are helpful to the study
of optimization problems. For a given parametric problem, we determine its parametric
dual using the horizontal disturbance of the objective function. We establish qualification
conditions guaranteeing the strong duality between the two problems. We then give the
dual version of the results. These duality results are then applied to the specific case of
minimization the maximum of two convex functions. In practice, data of optimization
problem are submitted to modeling or measurement errors, which leads us to consider
an uncertain conical convex optimization problem. By the means of an epigraphic ap-
proach, we establish robust strong duality for this problem. We end this thesis by stu-
dying an uncertain quadratic optimization problem where the uncertain data belong in
a bounded set. We characterize the set of robust optimal solutions in homogeneous and

non-homogeneous cases under some conditions.



Introduction générale

Les problemes d’optimisation ont occupé certains chercheurs au cours des années. Les
chercheurs grecs ont considéré divers problemes d’extrema liés aux figures géométriques.
Au IVe siécle avant I’ere chrétienne, Euclide, dans ses ”Eléments”, a montré que le pa-
rallélogramme de plus grande surface incluse dans un triangle a pour sommets un des
sommets du triangle et les trois milieux des cotés. Apres une longue période de la-
tence, I’étude des problemes d’optimisation a pris un nouvel envol au XVII* siecle avec
I’avénement du calcul différentiel. C’est en ce moment que Fermat dans le cas des po-
lyndmes, énonga ce qu’on appelle la regle de Fermat. Cette regle stipule que la dérivée
d’une fonction est nulle au point ou elle atteint son minimum. Il revient a Newton et
Leibniz d’avoir forgé les outils de base du calcul différentiel, qui permettent une étude
systématique de nombreux problemes d’optimisation. Jean Bernoulli proposa a la com-
munauté mathématique le probleme qui consiste a déterminer la courbe permettant le
transfert, d’un point a un autre, d’une masse ponctuelle en un temps minimum. L"Hopital,
Leibniz et Newton proposerent une solution au dit probleme. La solution fut publiée dans
le numéro de mai 1697 de la revue Acta Eruditorum. Euler, puis Lagrange étudicrent de
facon systématique les problemes d’optimisation de courbe. L.e domaine fut appelé cal-
cul des variations en raison de la méthode des variations introduite par Lagrange, et se
développa considérablement au XIX¢ siecle, en liaison avec la mécanique. Enfin, le XX*
siecle a vu le développement des méthodes d’optimisation grace a I’introduction de la
dualité et de ’analyse convexe. En effet, la dualité permet de regarder un probleme d’op-
timisation sous deux angles : le probleme primal et le probleme dual. L’utilité de cette
notion de dualité réside d’une part du faite que la valeur du dual est une minorante de
celle du primal (dualité faible) et dans certains cas on a 1’égalité entre les deux valeurs

avec exactitude (c’est-a-dire la valeur est atteinte) de celle du dual (dualité forte). D’ autre
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0.1. ETAT DE LART

part, il peut exister un passage de I’ensemble des solutions optimales du probleme dual a

celui du primal et vice versa. L’analyse convexe quant a elle permet entre autre d’assurer

I’existence et / ou I'unicité de solutions optimales. Dans de nombreux cas, la convexité

permet de caractériser les solutions optimales grace aux équations d’Euler et de Karush-

Kuhn-Tucker (KKT). C’est également au XX¢ siecle que les applications techniques ont

connu un développement fulgurant, notamment dans les domaines des sciences sociales,

de la finance, de la gestion et de I’économie.

Dans la pratique, les données d’un probleme d’optimisation sont souvent soumises a des

erreurs de modélisation ou de mesure et pour y remédier, A. L. Soyster [61] a introduit la

notion de solution robuste (le pire des cas). Cette approche d’optimisation robuste a été

valorisée par A. Ben-Tal et collaborateurs [9] au début du XXI* siecle.

L’ objectif de cette these est d’établir :

— la dualité forte pour un probléme d’optimisation paramétrique sous de nouvelles condi-
tions de qualification ;

— la dualité forte robuste d’un probleme d’optimisation convexe conique a données incer-
taines ;

— une caractérisation des solutions optimales robustes pour des problemes quadratiques
(homogene et non homogene) a données incertaines.

La these est organisée en quatre (4) chapitres.

0.1 KEtat de Dart

Dans ce chapitre, nous rappelons les principaux concepts et résultats d’analyse convexe
utiles a I’étude des problemes d’optimisation. L’étude des problemes coniques requiert
certaines propriétés relatives aux cones qui y sont également développées. Nous rappelons
le S-lemma et le théoréeme des alternatives, lesquels résultats sont utiles a I’étude des

problemes d’optimisation quadratique.

0.2 Dualité pour des problemes paramétriques

Ce chapitre est dédié¢ a une étude abstraite de la théorie de la dualité en optimisation
convexe dans les espaces vectoriels topologiques. On considere le probleme paramétrique
(primal) suivant :

minimiser F(x,y), slcxe X, (Py)

ou s.l.c signifie ”sous les contraintes”, X et Y sont deux espaces vectoriels topologiques,

X* et Y* leurs duaux topologiques respectifs, F : X x ¥ — R une fonction convexe et le

X1l



0.3. DUALITE ROBUSTE POUR DES PROBLEMES D’OPTIMISATION CONVEXE CONIQUE A DONNEES
INCERTAINES

parametre y est fixé dans Y.
On associe a la fonction F, la fonction dite de perturbation (horizontale) G, : X XY — R
définie par

Gy(x,u) = F(x,y+u), Y(x,u) e X xXY. (1)

Ceci permet d’obtenir le probléme dual paramétrique associé€ au probleme (P,) donné par
maximiser — G)(0x-,y"), s.l.cy” € Y™ (Dy)

Notons que pour y fixé dans Y, la valeur de (D,) est inférieure ou égale a celle de (Py) (dua-
lité faible) et le gap entre les deux valeurs est appelé saut de dualité. De nombreux auteurs
ont proposé des conditions pour annuler le saut de dualité (dualité forte), en particulier
des conditions de point-intérieur a partir de I'intérieur classique ou d’autres notions de
I’intérieur tels que : le "core” ([55]), le "intrinsic core” ([34]) et I’intérieur quasi-relative
([19]). On retrouve dans les ouvrages de Zilinescu ([69]) et de Bot ([15]) des conditions
de qualifications réalisant la dualité forte de probleme non paramétrique en faisant inter-
venir des projections.

Nous donnons des conditions de qualifications de type intérieur et fermeture garantissant
des résultats de dualité forte du probleme paramétrique. Nous donnons aussi les versions
duales de nos résultats de dualité forte ([S5]). Nous appliquons ensuite ces propriétés de
dualité forte a la minimisation du maximum de deux fonctions convexes. Dans ce cas

nous généralisons des résultats de dualité forte obtenus par Traoré-Volle ([65]).

0.3 Dualité robuste pour des problemes d’optimisation
convexe conique a données incertaines

Nous étudions dans ce chapitre un probleme d’optimisation convexe conique incertain
défini par
inf f(x) slc g,(x)e-S, (P)
X

ou U est un ensemble incertain, X et Y sont deux espaces vectoriels topologiques Haus-
dorff localement convexes, f : X — R U {+o0} est une fonction convexe semi-continue
inférieurement et propre, S C Y est un cone convexe fermé non vide, pour chaque u € U,
la fonction g, : dom(g,) C X — Y est soit §-convexe fermée par épigraphique ou S -
convexe fermée par niveaux.

Au probleme (P) est associé sa contrepartie robuste ([8], [9], [11]) définie par

inf f(x) slc gux)e-S, Yuel. (RP)

Xiii



0.3. DUALITE ROBUSTE POUR DES PROBLEMES D’OPTIMISATION CONVEXE CONIQUE A DONNEES
INCERTAINES

Le dual "optimiste” du probleme (P) ([7], [16], [36], [43]) est défini également par

sup in)g{f(x) + Ag,(x)} sle (u,)eUxS". (ODP)

(u,/l) X€

Notons que le probleme (P) a été étudié par Jeyakumar et collaborateurs ([43]) avec les
fonctions g, définies et continues sur I’espace X, ce qui est une condition plus forte que
la fermeture des tranches ou des épigraphes.

La dualité forte de ce probleme dans le cas ou il n’y a pas d’incertitudes, a été étudiée par
Bot ([15]) et par Dinh, Vallet et Volle ([29]). L’apparition de I’incertitude au niveau des
problémes fait intervenir une notion de solution appelée solution robuste, laquelle notion
a été introduite par Soyster ([61]). Ces solutions robustes sont les solutions du probleme
(RP). La valeur de la contrepartie robuste (RP) notée inf(RP), est appelée valeur robuste
du probléme incertain (P).

La dualité forte robuste est vérifiée s’il y a €galité entre la valeur robuste et la valeur du
dual "optimiste” avec exactitude de la valeur du dual “optimiste”. La dualité forte robuste
est vérifiée si on a donc 1’égalité inf(RP) = max(ODP).

La dualité forte robuste a été établie par Li, Jeyakumar, Lee dans [43, Corollaire 3.1] dans
le cas ou les fonctions g, : X — Y sont §-convexes par €pigraphe et continues sous la
condition

epif” + U epi(Ag,)” est convexe w*-fermé, (2)
ueU,AeS*

ou S * est le cone polaire positif de S.
Ces auteurs utilisent I’approche de fonction de perturbation pour aboutir a leur résultat.

Nous introduisons le probleme suivant
supinf{f(x) : g.x)€-=S} slc uelU (0)

et nous appelons sa valeur, la pire valeur du probleme (P).

On observe que la pire valeur est une minorante de la valeur robuste et que 1’inégalité entre
ces deux valeurs peut étre stricte. L’ objectif de ce chapitre est de donner une condition
nécessaire et suffisante permettant d’obtenir 1’égalité entre la valeur robuste et la pire
valeur, avec exactitude de la pire valeur (c’est-a-dire la pire valeur est atteinte). On déduit
de cette propriété une condition suffisante permettant d’obtenir la propriété de dualité forte
robuste et on compare ce dernier résultat a celui de Jeyakumar, Li et Lee. En établissant
I’égalité entre la valeur robuste et la pire valeur, nous établissons la dualité forte robuste
du probleme (P) ([6]).

X1V



0.4. OPTIMISATION QUADRATIQUE A DONNEES INCERTAINES

0.4 Optimisation quadratique a données incertaines

Ce dernier chapitre aborde 1’étude des problemes quadratiques a données incertaines de

la forme
minimiser %xTAx +a’x
X"Bx+b"x+B<0 (UNH)
Hx =d,

s.l.c

ot A € 5" abeRBeR,deR" H est une matrice d’ordre m X n, n,m € N* et
(B,b) € S" x R" est incertain et appartient a un ensemble incertain V = V|, X V| avec
Vo =A{Bo+uBy : p € [po, i1}, Vi =1{bo+6by : 6 € [60,611} o pro, i1 € R = o < pay,
00,01 ER : 6y <8y, By, B € S" et by, by € R".

Ce type de probleme apparait dans plusieurs domaines d’applications tels que la commu-
nication et le traitement du signal ([46], [59]).

Jeyakumar et collaborateurs ([37]) ont étudié ce probleme dans le cas ou H := 0,d = 0 et
S > 0. IIs utilisent une version robuste du S-lemma et du théoreme des alternatives pour
établir une caractérisation des solutions optimales robustes. Nous établissons une version
robuste plus générale du S-lemma et du théoreme des alternatives pour caractériser les

solutions optimales robustes de (UNH).
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CHAPITRE 1

Etat de I'art

1.1 Quelques notions sur I’analyse convexe

Nous donnons dans cette partie quelques concepts essentiels sur 1’analyse convexe utiles

pour I’étude des problemes d’optimisation convexes.

1.1.1 Ensemble convexe

Considérons un R-espace vectoriel X. Afin d’introduire la définition d’ensemble convexe

nous abordons la notion d’ensemble affine.

1.1.1.1 Ensemble affine

Soient x et y distincts dans X, I’ensemble des points de la forme
1-Dx+ Ay, A€R,

est appelé “ligne” passant par x et y.

Définition 1.1. Un sous-ensemble M de X est appelé ensemble affine si

(1-=Dx+Aye M pourtout x,ye MetdeR.

Un ensemble affine M est donc un ensemble qui contient la “ligne” passant par deux

points quelconques de M.

Exemple 1.1. L’ensemble vide () par convention et I’espace X sont des ensembles affines.



1.1. QUELQUES NOTIONS SUR LANALYSE CONVEXE

Définition 1.2. Pour un sous-ensemble M C X, on définit le plus petit ensemble affine
contenant M par
aff M := [ A € X | M C A, A affine).

aff M est appelé enveloppe affine de M et on vérifie que (voir [4, Theorem 1.13])

afFM:{Z/lixilneN*, LeR x;eM i=1,....n Zﬁ,:l}.
i=1

i=1
Remarque 1.1. Un sous-ensemble M affine contenant I’origine de X est un sous-espace

vectoriel.
Nous obtenons un lien entre un ensemble affine et un sous-espace vectoriel.

Proposition 1.1 ([66]). Un sous-ensemble non vide M de X est un ensemble affine si et

seulement s’il existe un sous-espace vectoriel L de X et a € M tel que M = {a} + L.

1.1.1.2 Intérieur algébrique

Définition 1.3. Soit M un sous-espace vectoriel de X et soit A un sous-ensemble de X,

Uintérieur algébrique noté ainty, A de A par rapport a M est :
ainty A:={aeX|VxeM, 36 >0:V1€[0,6], a+ Ax € A}.

Remarque 1.2. On peut distinguer deux cas importants :

(i) M = X, dans ce cas I'intérieur algébrique de A par rapport 2 M est noté A’ et est appelé
tout simplement intérieur algébrique de A ;

(if) M = aff(A — A), dans ce cas I'intérieur algébrique de A par rapport & M est noté A"
et est appel€ intérieur algébrique relatif de A.

On obtient donc I’expression suivante de I’intérieur algébrique relatif :
A" ={ae X|Vxeaff(A), 36 > 0: YA€ [0,6], (1 - Da + Ax € A}.

1.1.1.3 Ensemble convexe

Définition 1.4. Un sous-ensemble C de X est dit convexe si pour tous x, y € C et pour tout
A€ [0,1], Ax + (1 — D)y € C; c’est-a-dire que C contient tout segment entre deux points
de C.

Exemple 1.2.

(i) Par convention, I’ensemble vide () est convexe.
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(ii) Soient x,y € R, I’intervalle ouvert
I, y[={x+(1-Ay:0<A<1}
est un ensemble convexe de R.

Remarque 1.3. La notion d’ensemble convexe est donc plus générale que celle d’en-

semble affine en ce sens que tout ensemble affine est convexe.

Définition 1.5. Une combinaison convexe des éléments x;, xo, ..., x, € X est un élément
x de la forme

x=A1x1+bxy+ ...+ A,x,,

avec A, ZO,...,/anOetZ/li: 1.
i=1

On en déduit une autre caractérisation des ensembles convexes.

Proposition 1.2 ([66]). Un sous-ensemble C C X est convexe si et seulement si pour tous

n
A4 20,...,4, >0 tels que Z/li:letpourtouscl,cz,...,cn eC,ona
i=1

Zn: Aic; € C.
i=1

Certaines opérations sur les ensembles convexes préservent la convexité.

Proposition 1.3 ([66]). Les opérations suivantes préservent la convexité :
(i) Uintersection d’une famille quelconque d’ensembles convexes est convexe,

(ii) si C;,C, C X sont deux sous-ensembles convexes alors la somme de Minkowski
notée et définie par

C1+C2:{X+y3X€C1,yEC2}

et le produit de Cy par un scalaire «a noté et défini par
aCy={ax:xe (Cy}, aeR

sont convexes,

(iii) le produit cartésien de deux sous-ensembles convexes C,C, C X est un sous-

ensemble C; X C, convexe de X X Y,

(iv) I’image d’un convexe C C X par une application affine f : X — Y, (o Y est un R

espace vectoriel) est un convexe.
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Proposition 1.4. Si C C X est un ensemble convexe et 11 > 0,1, > 0, alors
(/11 + /lz)c =A4,C + A,C.

Preuve.
Le résultat est évident si 4; = 0 et A, = 0.
Si au moins un des A;, A, est non nul, on a pour tout ¢c; € C,c; € C,

4 A
c1 +
A+ Ay A1+ Ay

c,=ceC.

Il en résulte que

A4 A
c) + c
/11 + /12 /11 + /12

(A + A2) 2| = Adicr + Axcp = (A1 + Ay)e € (A + A)C,

donc 4;C + 1,C C A + /lz)C

Inversement, pour tout ¢ € C, comme
(/11 + /7.2)6' = Adic+ Ac € 1,C + A,C,

alors
().1 + /lz)c c 4,C+ A,C.

On conclut que
A + /lz)c =1,C + A,C.

O

Remarque 1.4. Pour tout sous-ensemble de X, il existe un plus petit ensemble convexe le

contenant.

Définition 1.6. Soit S c X, I’intersection de tous les sous-ensembles convexes contenant

S est appelé I’enveloppe convexe de S. C’est le plus petit ensemble convexe contenant S .

Onlenoteco S ouconv S etona:

coS = ﬂ {A S CAA convexe}.

Si de plus, X est un espace topologique, on note co S 1’enveloppe convexe fermée de S.

Proposition 1.5 ([4]). Soit S C X, I’enveloppe convexe co S est I’ensemble de toutes les

combinaisons convexes des éléments de S .

coS :{Z/l,-xi: x €8, 4,=>0i=1,...,m, meN, Z/lizl}.

i=1 i=1
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Corollaire 1.1. L’enveloppe convexe de m points de X, {x,, x5, ..., x,} C X est

m

co(X, X2, ..., Xp) = Z/lixi: ,>0,i=1,...,m, Z/lizl .
i=1

i=1

Définition 1.7. L’enveloppe convexe de m+1 points linéairement indépendants yg, y1, ..., Y
est appelé simplexe de dimension m et de sommets yg, y1, . .., Vp-
1
Remarque 1.5. Le point Agyg + 41y; + ...+ A ymavec g = A = ... = Ay = T est
m

appelé iso-barycentre du simplexe.

1.1.1.4 Cone convexe

Définition 1.8. Un sous-ensemble K de X est un cdne s’il est invariant pour la multipli-

cation par un scalaire strictement positif, ¢’ est-a-dire
Vxe K, YA1>0, Ax € K.

Remarque 1.6. Un cone a plusieurs propriétés, entre autres :
(i) I'origine O peut ou ne pas appartenir au cone K,
(if) dans le cas ou le cone ne contient pas de droite, on parle de cone “pointu”,

(7ii) I’ensemble {a}+ K, a € X appelé translation du cone K par a est un cone de sommet

a.

Exemple 1.3. Parmi les exemples de cOnes convexes on peut citer :

(i) I’orthant positif de R”

R} ={x=(x,x,....,x) €R" 1 x; 20,x, 20,...,x, >0},

(if) le cone des matrices symétriques semi-définies positives
S"={A eSS : xTAx > 0 Vx € R", n € N*} dans '’ensemble des matrices

symétriques d’ordre n,

(iii) le cOne de Lorentz ou “ice cream cone”,

Ln:{x:(xl,xz,...,xn)eR” Y B U g neN*},

n—1

(iv) tout sous-espace vectoriel de X.

Proposition 1.6 ([66]). Un sous-ensemble C C X est un cone convexe si et seulement s’il
vérifie les deux assertions suivantes :

(i) Vxe C,¥A1 >0, Ax € C,

(i) VYx1,x € C, x1 +x, € C.
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Définition 1.9. Un point de la forme A, x;+Ax,+. ..+ 4,x, avec 4; > 0,4, >0,...,4,>0
est appelé combinaison conique (ou combinaison linéaire strictement positive) des points

X1y X2y ooy Xy

Corollaire 1.2. Un sous-ensemble C de X est un céne convexe si et seulement si il contient

toutes les combinaisons coniques de ses éléments.

Remarque 1.7. L’intersection d’une famille quelconque de cones convexes est un cone

convexe.

Corollaire 1.3. Soit C un sous-ensemble de X, le plus petit cone convexe contenant C est

appelé enveloppe conique convexe noté cone(C) et est obtenu par :
cone(C) ={ix;+ xo+...+4,x,:neN", x;,€C,A,>0,i=1,...,n}L

Si I’ensemble C est de plus convexe, on obtient une forme plus simple de 1’enveloppe

conique.

Corollaire 1.4. Soit C un sous-ensemble convexe de X alors

cone(C)={Ax:x€C,A> 0}

1.1.1.5 Cone propre et inégalité généralisée
Dans cette sous section, on suppose que X est un R-espace vectoriel topologique.
Définition 1.10. Un cone K C X est appelé cone propre s’il vérifie les propriétés sui-
vantes :
(i) K est convexe,
(if) K est fermé,
(7ii) K est solide c’est-a-dire que I’intérieur de K est non vide,

(iv) K est pointu c’est-a-dire que K ne contient pas de droite autrement dit :

xeKet—xe K= x=0.

Un cone propre K défini un ordre partiel avec I’inégalité généralisée qu’il engendre sur

X. Au cOne propre K on associe I'inégalité généralisée notée <k et définie par :
x<gkye=y—-xek,

appelée ordre partiel.

On définit de maniere analogue I’ordre partiel strict notée <y par
X <gy & y—xe€intk,
ou intK désigne I’intérieure topologique de K.

6



1.1. QUELQUES NOTIONS SUR LANALYSE CONVEXE

Remarque 1.8. Si X = Ret K = R,, I’ordre partiel <g est I’ordre usuel < sur R, et I’ordre

partiel strict <g est 1’ordre strict usuel < sur R.

Exemple 1.4. L’orthant positif K = R’ est un cone propre. L’inégalité généralisée as-

soci€e <pn est I'in€galit€ composante par composante entres vecteurs :
Vi, yeR" x<pmy e x; <y, i=1,...,n.

Exemple 1.5. Le cone des matrices symétriques semi-définies positives d’ordre n, S
est un cone propre dans 1’ensemble des matrices symétriques d’ordre n, S". L’inégalité

généralis€e associ€e <g est I'in€galité matricielle définie par :
VA,B € S", A<y B+ B-A est semi-définie positive c’est-a-dire xI(B-A)x >0 Vx e R",
ol x” est la transposée de x.

Propriété 1.1 ([21]). Pour tout cone propre K de X, I’'inégalité généralisée <y satisfait
les propriétés suivantes :
(i) Vx,y,u,ve X, six<gyetu<gv,alorsx+u<gy+v,
(ii) Vx,ye Xeta >0, si x <g y, alors ax <k ay,
(iii) L’inégalité généralisée <k est :
o réflexive c’est-a-dire
Vx e X, x <k x,
e antisymétrique c’est-a-dire
Vx,ye X, six<gyety<gx, alors x =y,
e transitive c’est-a-dire

Vx,y,z€ X, six <gyety <k zalors x <g z.

L’inégalité généralisée stricte <g a aussi certaines propriétés intéressantes.

Propriété 1.2 ([21]). Vx,y € X,
(i) si x <g yalors x <gy,
(ii) Yu,ve X, six<gyetu<gvalorsx+u<gy+v,

(iii) si x <g y alorsVa >0, ax <k ay.
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Plusieurs propriétés liées a 1’inégalité ordinaire < sur R sont valables pour 1’inégalité
généralis€ée <. Cependant il existe certaines qui ne sont pas valables pour 1’inégalité
généralisée. Plus spécifiquement I'inégalité généralisée n’est pas une relation d’ordre to-

tale, ce qui rend délicat la notion d’élément extremum.

Définition 1.11 ([21]). Soit S un sous-ensemble de X et K un cone propre de X.

Un élément x € S est dit élément minimum (respectivement maximum) de S par rapport a
I’inégalité généralisée < si pour touty € S, on a x <g y (respectivement y <g Xx).

Une définition équivalente est la suivante : Un élément x € S est un élément minimum

(respectivement maximum) si
S C x + K (respectivement si —S C —x + K).

L’ensemble x + K est ’ensemble des €léments comparables avec x et plus “grand” ou

égale a x par rapport a <.

Propriété 1.3 ([21]). Si un ensemble a un minimum (respectivement un maximum) alors

il est unique.

Définition 1.12. Soit S un sous-ensemble de X et K un cone propre de X. On dit qu'un
€lément x € S est un élément minimal (respectivement maximal) de S par rapport a
I’inégalité généralisée <k si poury € S tel que y <g x (respectivementy >, x) alorsy = x
(respectivement y = Xx).

On dit aussi qu’un élément x € S est un élément minimal de S (par rapport a <g) si
({x} -K)NS = {x}.
x — K est ’ensemble des éléments comparables a x et plus “petit” ou égale a x.

Remarque 1.9. Si X = Ret K = R*, I'ordre partiel <x devient I’ordre ordinaire <. Dans
ce cas les concepts d’élément minimum (maximum) et d’élément minimal (maximal)
coincident. Ces notions correspondent a la définition usuel d’élément minimum (maxi-

mum) d’un ensemble.
Nous aurons aussi besoin dans la suite de la notion de cone régulier.

Définition 1.13 ([39]). Un cone K C R” est un cone régulier si K U (—K) est un sous-

espace vectoriel de R”.

Exemple 1.6. Le cone de premier ordre [3], K = S + R.d, ou § est un sous-espace
vectoriel de R” et d € R", est un cone régulier. En particulier les sous-espaces vectoriels,

les rayons R.d (ou d € R") sont des cOnes réguliers.
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1.1.2 Fonction convexe

Considérons X un R-espace vectoriel et f : X — R = [—o0, +c0] une fonction.

1.1.2.1 Définitions et propriétés

Définition 1.14. On appel domaine effectif ou tout simplement domaine de f le sous-

ensemble noté dom(f) de X et défini par :
dom(f) :={x € X | f(x) < +o0}.
Définition 1.15. La fonction f est dite propre si
dom(f) # 0 et f(x) > —c0, VYx € X.
Définition 1.16. Le sous-ensemble de X X R noté epif et défini par
epif :={(x,r) e X XR| f(x) <r}

est appelé épigraphe de f.

Si I'inégalité est stricte on parle d’épigraphe strict noté epig f et défini par
epig f = {(x,r) e X X R | f(x) < r}.

Définition 1.17. Soient X et Y deux ensembles, la projection sur X (respectivement sur
Y) est la fonction notée Py : X X ¥ — X (respectivement Py : X X ¥ — Y) et définie

par : Px(x,y) = x (respectivement Py(x,y) = ).

Remarque 1.10. Soient X et Y deux ensembles et A X B un sous-ensemble de 1’espace
produit X X Y. La projection de A X B sur I’ensemble X (respectivement Y) est le sous-
ensemble A (respectivement B) et notée par Pry(A X B) (respectivement Pry(A X B)). On
a donc

Pry(AxB)={xeX : dyeB, (x,y)eAXB}=A

et
Pry(AXB)={yeY : dx€A, (x,y)€e Ax B} =B.

Remarque 1.11. Par définition de la projection,
Pry(epif) :={xe X |dreR: f(x) <r}

et on a que dom(f) = Prx(epif).
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Définition 1.18. Les ensembles
[f<rl={xeX|fx)<r}, reR

et
[f>2rl=xeX|f(x)>r}, reR

sont appelés respectivement tranche inférieure de f de niveau r et tranche supérieure
de f de niveau r. Si les inégalités sont strictes alors on parle respectivement de tranche

inférieure stricte et de tranche supérieure stricte.

Définition 1.19. La fonction f est dite convexe si
S =Dx+ ) <A -Df(x)+Af(y), YVx,ye X, YA1e]0,1]
avec la convention
(400) + (=00) = 400, 0.(+00) = 400, 0.(—00) = 0. (1.1)
L’inégalité de Jensen donne une définition plus générale de la convexité.

Propriété 1.4. f est convexe si et seulement si f vérifie I’inégalité de Jensen
f(/llxl + ...+ 4,x, < /llf(xl) +...+ /lnf(x,,),
YA, =20, Yx;eX,i=1,....n,neN,n>2: A1 +...+4,=1

Preuve.
Si f est convexe on montre par récurrence que 1’inégalité de Jensen est vérifiée.
Si I'inégalité de Jensen pour la fonction f est vérifiée, il est clair que la fonction est

convexe. O
On utilise aussi une propriété géométrique pour caractériser la convexité d’une fonction.

Propriété 1.5 ([4]). La fonction f est convexe si et seulement si son épigraphe epif ou

son épigraphe strict epif est convexe.
Définition 1.20. La fonction f est concave si (—f) est convexe.

Exemple 1.7.
(i) Lafonction f : R — R définie par

xP six>0
f(x) = avec 1 < p <40
+o0 six <0

est convexe.

10



1.1. QUELQUES NOTIONS SUR LANALYSE CONVEXE

(ii) Lafonction f : R — R définie par

xP six>0
fo) = avec 0 < p <1
—o0 six<0

est concave.
(iii) La fonction f : R — R définie par

—Inx six>0

fx) =

+oo s8ix<0
est convexe.

Il existe d’autres caractérisations de la convexité des fonctions souvent liées a la nature

de I’espace X.

Proposition 1.7. La fonction f : X — R est convexe si et seulement si sa restriction sur
une "ligne” quelconque est convexe c’est-a-dire que pour tout x € X ety € X, la fonction
¢xy : R — R définie par

o) = flx+1y), 1€R

est convexe.

Preuve.

Comme pour tout z € X, dx,y € X, r € R tels que z = x + ty et de plus

@yt + (1 = Dta) =f(x + (A + (1 = Drr)y)
=f(x+ Ax — Ax + ALy + (1 — Dtyy)

=f(Ax + 11y) + (1 = D(x + 12y)),
alors pour tout x,y € X, ¢, est convexe si et seulement si f est convexe. O

Proposition 1.8. Soient (H,<.,.)) un espace de Hilbert et f : H — R une fonction
différentiable, alors les assertions suivantes sont équivalentes :

(i) f est convexe,

(it) Yx,y € H, f(y) 2 f(x) +(Vf(x),y = x),
ou V f(x) est le gradient de f en x.

Remarque 1.12. La condition (i7) est appelée condition de premier ordre.

11



1.1. QUELQUES NOTIONS SUR LANALYSE CONVEXE

Preuve.

Supposons que f est convexe. Soient x,y € H, on a pour tout ¢ €]0, 1[ :

Jx+ 1y =) = f(x) < 1(f(y) = f(x).

En multipliant les deux membres de I’inégalité par " et en passant a la limite pour 7

tendant vers O on obtient :

JO) = f(x) +(Vf(x),y — x),
d’ou (ii).
Supposons (ii). Pour tout ¢ € [0, 1], (ii) est vraie pour x + #(y — x) et x, ¢’est-a-dire

J) 2 f(x+ 1y =) =KV x +1(y = x), (v = X)),

(i) est aussi vraie pour x + #(y — x) et y, c’est-a-dire

JO) 2 flx+1(y —x) + (1 = XVfx+1(y = x)), (v = x)).

En faisant la combinaison convexe des deux inégalités on obtient :

(A =0f) +1f(y) = f(x + 1y — X)),
ce qui prouve la convexité de f. O

Proposition 1.9. Soit (H,(.,.)) un espace de Hilbert et f : H — R une fonction
différentiable, alors f est convexe si et seulement si V f est un opérateur monotone c’est-
a-dire

Vx,y € HxH, (Vf(x)=VfQ),x—-y)=0. (1.2)

Preuve.

Soient x,y € H, d’apres la Proposition 1.8, si f est convexe, on a :

JO) 2 f() +(Vf(x),y—x)

et
f) = fO)+(Vf), x—y),

en faisant la somme membre a membre on obtient

(Vf(x) =V (), x-y 20.

Réciproquement, pour x,y € H tels que x # y, soit la fonction ¢ : [0, 1] — R définie
par :

o) = (1 =D f(x) +1f(y) = flx +1(y = x)).
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@ est dérivable et on a :

Viel0,1], ¢ @) =—f(x)+f0)—(Vflx+1y—x)y—x).

Par suite, VYt;,1, € [0,1] : t; £ 1o,

(1 — )@ (1) — ¢'(2) = (Vf(x + 2y = X)) = Vf(x + 11(y — ), (11 — )y — %)) <0,

(d’apres (1.2) ). Par conséquent, ¢ est décroissante sur [0, 1]. De plus ¢(0) = ¢(1) = 0 et
d’apres le théoreme de Rolle, il existe a €]0, 1] tel que ¢’(a) = 0. En utilisant le tableau de

variation de ¢, on obtient que ¢ > 0 sur [0, 1], ce qui correspond a la convexité de f. O

Proposition 1.10. Soit (H,<.,.)) un espace de Hilbert et f : H — R une fonction deux

fois différentiable, alors les assertions suivantes sont équivalentes :
(i) f est convexe,
(ii) la matrice Hessienne V*f de f est semi-définie positive sur H.

L’assertion (ii) est appelée condition de second ordre.

Preuve.

Si f est convexe alors d’apres la Proposition (1.9)
(Vf() =V, x=y) 20,
en posant x —y = fw, t > 0 on obtient
(Vi +tw), w) —(Vf(y), tw) > 0.
En divisant par ¢ et en passant a la limite quand t — O*, on a:
(Vf()w, w) > 0.

Réciproquement supposons que V2f est semi-définie positive sur H. Soient x,y € H,

d’apres la formule de Taylor il existe 6 €]0, 1] tel que

1
JO) = f) +(Vf(x),y - x) + §<V2f(x +0(y — )y = x),y - x).

Si V2 f est semi-définie positive, d’apres la proposition 1.8, f est convexe.
m]

Corollaire 1.5. Soit f : R — R une fonction deux fois dérivable sur un intervalle ouvert
la, Bl de R, alors :

f est convexe sur la, B[ < f” >0 sur ]a,pl.
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Corollaire 1.6. Soit (H,<{.,.)) un espace de Hilbert, soit A : H — H une application
linéaire continue auto-adjointe (c’est-a-dire vérifiant A* = A), soit b € H et soit c € R.

La fonction f : H — R, dite quadratique, définie par :
1
f(x) = 5(x, Ax) + (b, x) + c,

est convexe sur H si et seulement si {u,Au) >0, Yu € H.

En particulier si H = R", la fonction quadratique f : R" — R définie par

F09 = 506,00+ (a0 +a,

avec a € R", @ € R et Q une matrice symétrique de taille n X n, est convexe sur R" si et

seulement si Q est semi-définie positive.

Nous décrivons certaines opérations qui conservent la convexité, ce qui permet de construire

de nouvelles fonctions convexes.

Proposition 1.11. Si f; : X — R, i = 1,...,n sont n fonctions convexes alors pour

a;>0,i=1,...,n, lafonction

f=afitarfr+...+aufy
est convexe. En particulier la somme de deux fonctions convexes est convexe.
Par définition, la preuve est immédiate.

Théoreme 1.1. Si f, : X — R, i € I # 0, I C N est une famille de fonctions convexes

alors la fonction sup f; définie par
i€l

(sup fi)(x) = sup fi(x)

i€l i€l

est convexe.

Preuve.
Puisque
epi(sup f;) = | epif;
iel iel
est convexe, on déduit le résultat de la Propriété 1.5. O

Corollaire 1.7. Soient f; et f> : X — R deux fonctions convexes. La fonction
f : X — R définie par : f = supl{fi, f>} notée souvent f, V f» et définie par

J) = (/i V 2)x) = sup{fi(x), L(0)}, VxeX

est convexe.
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Remarque 1.13. Notons que I’infimmum de deux fonctions convexes n’est pas forcement
convexe. En effet, les fonctions définies par

filx) = x+ let fo(x) = x>, Vx € R sont convexes sur R, mais

X2 sixe[

1-v5 1+\/§]
2 0 2

J) = (fi A () = inf{fi(x), 2(x)} =

x+1 sinon,

n’est pas convexe sur R.

Etant donné E C R, on écrit min(E) (respectivement max(E)) au lieu de inf(E) (respecti-

vement sup(E)) lorsque I’infimum (respectivement le supremum) est atteint.

Définition 1.21. Soient X et ¥ deux espaces vectoriels et F : X X ¥ — R une fonction.

La fonction 4 : ¥ — R définie par

h(y) = inf F(x,y)
xeX
est appelée fonction marginale associée a F'.
Théoreme 1.2. Si F est convexe alors la fonction marginale h associée a F est convexe.

Preuve.

En effet, epi,h = Pryepi F est convexe si F est convexe. O
Définition 1.22. La fonction indicatrice d’un sous-ensemble A de X est la fonction
i : X — R définie par :

0 sixeA

iA(X) =
+o0 six € X\A.

Remarque 1.14. 11 est clair que dom(iy) = Aetepiiy = A X R, etil en résulte que i est

convexe si et seulement si A est convexe.

Si f est convexe, les tranches inférieures et inférieures strictes de f de niveau r respecti-
vement [f < r], [f < r] sont convexes pour tout » € R. Le sens inverse est généralement

faux.

Définition 1.23. Une fonction f est dite quasi-convexe sil’ensemble [ f < r] est convexe,

pour tout r € R.

Propriété 1.6. Une fonction f : X — R est quasi-convexe si et seulement si
Yx,ye X, VYA€ [0,1]: f(Ax+ (1 - Dy) <max{f(x), f()}. (1.3)
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Preuve.

Supposons que f est quasi-convexe. Soient x,y € X, on a

x € [f csmax{f(x), fOM} et ye[f<max{f(x), f(M}]

Alors, YA € [0, 1],
Ax+ (1 =y € [f < max{f(x), f}].

D’ou (1.3). Inversement supposons que (1.3) est vérifiée. Soient r € R,xety € [f < r],

ona
f)<r et f@) <r.=max{f(x),f(y}<r

Comme (1.3) est vérifiée, alors

Yae[0,1]: f(Ax+ (1 -2y <max{f(x), f(M}<r.

Par conséquent [ f < r] est convexe. O

1.1.2.2 Généralisation de la convexité

De maniere naturelle, on étant la notion de fonction convexe a valeurs dans un R espace
vectoriel muni d’un ordre partiel engendré par un cone propre. Soit ¥ un R-espace vec-
toriel et K un cone propre de Y. Rappelons que le cone propre K induit un ordre partiel
noté <k et qu’il défini un élément maximal et minimal de Y relativement a 1’ ordre partiel.
Notons oo 1’élément maximal et —co 1’élément minimal. Par analogie a R, on considere
I’espace Y U {—c0, oo} et on note

Y* =Y U{co},

ou—oco¢YetoodYtel que —oco <gy,y <g copourtouty €Y (comme Yy € ¥,

y # 00,y # —oo, alors on pose y <g 00, —00 <g V).

Ainsi, soit (Y, <g) un R-espace vectoriel muni d’un ordre partiel <gx associé a un cone
propre K de Y et soit une fonction 4 définie d’un R-espace vectoriel X vers Y* c’est-a-
dire & : X — Y*. On peut définir, d’une maniere plus générale, la convexité d’une telle
fonction (se référer a [26], [41], [44], [45], [51], pour d’autres propriétés).

Définition 1.24. On dit que & : X — Y* est K-convexe si :
Vx,ye X, YA€ [0,1], h(dx+ (1 — d)y) <k Ah(x) + (1 — Dh(y).
En outre, & est dit K-concave si la fonction -4 : X — Y U {—o0} est K-convexe.

Exemple 1.8. Toute application linéaire définie de X vers Y est K-convexe pour tout cone

propre K de Y.
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Tout comme dans le cas ol Y = R, on peut définir le domaine et I’épigraphe de h.

Définition 1.25. Le domaine de & est défini par :
dom(h) = {x € X : h(x) <g o0}.
Son K-épigraphe, noté K-epi h est défini par :
K-epih = {(x,y) € X X Y : h(x) <k y}.
Son K-niveau de niveau y € Y est défini par :
[h <k y] = {x e dom(h) : h(x) € y — K}.

Définition 1.26. On dit que :

(i) hest K-convexe (respectivement K-fermée) par €pigraphe si le K-epik est convexe

(respectivement fermé),

(ii) h est K-convexe (respectivement K-fermée) par niveaux si les K-niveaux de 4 sont

convexes (respectivement fermés),
(iii) h est K-convexe fermée par épigraphe si le K-epih est convexe et fermé,

(iv) hest K-convexe fermée par niveaux si les K-niveaux de 4 sont convexes et fermés.

Définition 1.27. Si f est une fonction définie de Y vers R alors on dit que f est
K-croissante si

x<gy= f(x) < f(y) avec x,y €Y.

On définit de maniere analogue les fonctions K-décroissantes.

Exemple 1.9. On observe qu’une fonction linéaire ¢ : ¥ — R est K-croissante si et
seulement si ¢(y) > 0 pour tout y € K.
En effet, soit une fonction ¢ : ¥ — R.
Supposons que ¢(y) > 0, Vy € K. Soient x,z€ Y : x <k z, c’est-a-dire 7 — x € K ; donc
©(z — x) > 0 ce qui implique que ¢(z) > ¢(x) par linéarité de ¢. Inversement, soit y € K.

On a 0 <g y, comme ¢ est croissante alors ¢(y) > ¢(0) = 0.

On peut adapter les caractérisations de la convexité classique a cette généralisation de la

convexité.

Théoreme 1.3 ([69]). Soit g : Y* —> R une fonction convexe.
Sih:X — Y* est K-convexe et g est K-croissante alors g o h est convexe.
En outre g o h est convexe sih : X — Y U {—oo} est K-concave et g K-décroissante. En

particulier, si A est une application linéaire de X vers Y alors g o A est convexe.
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1.1.3 Fonctions quadratiques et convexité

Pour n € N*, nous considérons 1’ensemble S" des matrices symétriques et pour x € R”
nous désignons par x” la transposée de x. Pour A, B € S", I’écriture A > B signifie que la
matrice A — B est semi-définie positive et ’écriture A > B signifie que la matrice A — B
est définie positive.

Enoncons le lemme suivant dii a Dine.

Lemme 1.1 ([28]). Pour tout, A;, A, € S", alors I’ensemble
{(x"A1x,x"A>x) : x € R"
est convexe.

Notons que le théoreme de Dine peut étre vérifié s’il s’agit de plus de deux fonctions
quadratiques homogenes. Polyak [53] a étendu ce résultat a trois fonctions quadratiques

sous une condition supplémentaire.

Lemme 1.2 ([53]). Soient n > 3, Ay, A,,A; € S". Supposons qu’il existe y,y2,y; € R

tels que

V1A + y24A5 +y3A3 > 0.

Alors, I’ensemble

{(xTA x, xTAyx, xTA3x) © x € R"}
est convexe.

Il existe une formulation plus général du Lemme de Dine utilisant la notion de cone

régulier définie comme suit.
Lemme 1.3 ([39]). Soient A1, A, € S" et K un cone régulier de R". Alors, ’ensemble
{(xTAx,x"A2x) : x € K}

est convexe.

1.1.4 Théoremes des alternatives et S-lemma

Une notion tres utile en optimisation quadratique est le S-lemma. Notons que le S-lemma

est une version quadratique du lemme de Farkas ([35]) pour un systeme de deux inégalités.

Lemme 1.4 ([52]). Soient f et g : R" — R deux fonctions définies par
1 1
f(x) = ExTAlx + blTx +c; et glx)= ExTAzx + ng + Co,

ou A,A, €S", bi,by € R" et c1,c; € R. Supposons qu’il existe xy € R" tel que

g(xo) < 0. Alors les assertions suivantes sont équivalentes :
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(i) gx) <0, xeR'"= f(x) =0,
(i) A1 > 0:Vx e R", f(x)+ Ag(x) = 0.

Le théoréme des alternatives de Yuan ([24]) suivant est une extension du théoréme de

Gordan (pour les systemes linéaires) aux systemes quadratiques.

Lemme 1.5 ([24]). Soient A| et A, € S". Alors exactement une seule des assertions sui-
vantes est vérifiée :

() IxeR": 1xTAx <0, $x"Arx <0,

(@) A1, ) € R2\{(0,0)} : Yx € R?, xT (1A} + ,A5)x > 0.

Une généralisation du théoreme des alternatives de Yuan [39, Théoreme 3.2] a été obtenue

a partir du Lemme 1.3.
Théoreme 1.4 ([39]). Soient f et g : R" — R deux fonctions définies par
1 T 1 T N n
flx) = Ex Aix et f(x)= Ex Asrx, on Aq,Ar €S".
Soit K un cone régulier. Alors exactement une seule des assertions suivantes est vérifiée :

() dxeK: f(x) <0, g(x)<0,

@) A1, ) € R2\{(0,0)} : Vx € K, A, f(x) + A,8(x) > 0.
Dans [39, Corrolaire 3.1] A partir du Théoréme 1.4, une forme générale du S-lemma est
déduit.

Corollaire 1.8 ([39]). Soient K un cone régulier, f et g : R" — R deux fonctions définies
par

1 1
f(x) = 5xTAlx et f(x)= ExTAzx, on A,A,eS".

Supposons qu’il existe xo € K telle que g(xy) < 0. Alors, les assertions suivantes sont

équivalentes :
(@) gx) <0, xe K= f(x) >0,
(@) 31> 0:Vxe K, f(x) + Ag(x) > 0.

Le théoreme des alternatives de Yuan est donné dans [39] dans le cas d’un systeme

d’inégalités impliquant deux fonctions quadratiques non homogenes.
Théoreme 1.5 ([39]). Soient f et g : R" — R deux fonctions définies par
1 1
fx) = ExTA1x+blTx+c1 et g(x) = ExTA2x+b§x+cz, on A,A, eS", b;,b, e R" et ¢;,¢co €R.

Soient ay € R" et S un sous-espace vectoriel de R". Alors exactement une seule des

assertions suivantes est vérifiée.
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() dx€ag+So: f(x) <0, gx) <0,
(@) A1, ) € R2\{(0,0)} : Vx € ag + So, A1f(x) + rg(x) > 0.

Remarque 1.15. 11 a été observé dans [39] que le Théoreme 1.5 peut ne pas €tre vérifié si

on remplace I’ensemble a( + S dans le (i) par un cone régulier.

Le Théoreme 1.5 permet, dans [39] de donner une autre forme plus générale du S-lemma.

Corollaire 1.9. [39] Soient ay € R" et S un sous-espace vectoriel de R". Soient f et

g : R" — R deux fonctions définies par
1 T T 1 T T N n n
f(x) = Ex A x+b| x+c; et g(x) = Ex Aox+b; x+cy, o A1, Ay €5", by,b, eR" et ¢1,cp €R.

Supposons qu’il existe xy € ag + S tel que g(xy) < 0. Alors les assertions suivantes sont

équivalentes :
(i) gx) <0, x€eay+So= f(x) =0,
(@) A1 >0:Vxeap+ Sy f(x)+ Ag(x) > 0.

1.1.5 'Topologie faible, topologie de Mackey

Soit X un R-espace vectoriel et X* son dual topologique (I’ensemble des formes linéaires

continues sur X).

Définition 1.28. La ropologie faible notée o (X, X*) ou w est la topologie la moins fine

(possédant le minimum d’ouverts) rendant continue toutes les applications x* € X*.
Proposition 1.12 ([22]). La topologie o (X, X*) est séparée.

Pour chaque x € X, on considere I’application

ox i X" = R, f— o(f) = (f,0) = f(0).

Définition 1.29. La ropologie faible * que 1’on note o-(X*, X) ou w* est la topologie la

moins fine sur X* rendant continues toutes les applications (¢,)ecx-
Proposition 1.13 ([22]). La topologie faible = o(X*, X) est séparée.

Définition 1.30. La topologie de Mackey définie sur X* notée 7(X*, X) est la topologie la
plus fine (possédant le plus grand nombre d’ouverts) sur X* rendant continues toutes les

applications (¢, )ycx-
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1.1.6 Fonction semi-continue

1.1.6.1 Définition de la semi-continuité

Dans cette partie, X est un R-espace vectoriel topologique et f : X — R est une fonction.

Pour x € X, notons par .#x(x) I’ensemble des voisinages de x dans X.

Définition 1.31. La fonction f est semi-continue inférieurement en x € X si
VieR, f(x)>t, AVeMx(x) |V C[f>1]

La fonction f est semi-continue supérieurement en x € X si
YteR, f(x)<t, AV e Mx(x) |V C[f <1l

Définition 1.32. La fonction f est semi-continue inférieurement si elle est semi-continue

inférieurement en tout point x € X.

Propriété 1.7 ([4], [69]). f est semi-continue inférieurement (en abrégé s.c.i) si pour tout

r € R, la tranche inférieure de f de niveau r, [f < r] est fermée dans X.

Remarque 1.16. En fait, on peut énoncer cette définition de la semi-continuité en prenant

r € R puisque les ensembles

[f <+l =X et [f < -] =[ |[f 7]

reR

seront fermés.

Propriété 1.8 ([4], [69]). [ est semi-continue supérieurement (en abrégé s.c.s) si pour

tout r € R, la tranche inférieure stricte de niveau r de f, [f < r] est ouverte dans X.
Remarque 1.17. f ests.c.s si et seulement si —f est s.c.i.

Exemple 1.10. Soit A un sous-ensemble de X, la fonction indicatrice i est s.c.i (respec-

tivement s.c.s) si A est fermé (respectivement ouvert) et inversement.

Proposition 1.14 ([47]). f est s.c.i si et seulement si son épigraphe epif est fermé dans

I’espace topologique X X R.

Corollaire 1.10. f est s.c.s si et seulement si son épigraphe strict epi f est ouvert dans

I’espace topologique produit X X R.
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1.1.6.2 Semi-continuité de fonction convexe

Dans cette sous-section, X est un R-espace vectoriel localement convexe séparé. On peut

caractériser les fonctions semi-continues inférieurement en utilisant la topologie faible.

Théoreme 1.6 ([69]). Pour toute fonction f : X —> R, les assertions suivantes sont
équivalentes :

(i) f est convexe et s.c.i,

(ii) f est convexe et w-semi-continue inférieurement,

(iii) epif est convexe et fermé,

(iv) epif est convexe et w-fermé.

w-semi-continue inférieurement pour signifier que la continuité est prise par rapport a la

topologie faible et w-fermé pour dire que 1’ensemble est faiblement fermé.

Preuve.
Il suffit de remarquer qu’un ensemble convexe et fermé est convexe et w-fermé et vice

versa. O

Proposition 1.15 ([47], [69]). Soit f : X —> R une fonction convexe s.c.i. S’il existe
Xo € X tel que f(xp) = —oo, alors f(x) = —oo pour tout x € dom(f).

Théoreme 1.7 ([69]). Si la fonction convexe f : X —> R est bornée supérieurement sur
un voisinage d’un point de son domaine alors, f est continue sur l’intérieur de son do-
maine. De plus, si f n’est pas propre alors f est identiquement égale a —oo sur l’intérieur

de son domaine.

Corollaire 1.11 ([69]). Soit f : X — R une fonction convexe. Alors f est continue sur

int(dom(f)) si et seulement si int(epif) est non vide dans X x R.

1.1.6.3 Inf-convolution

Soient f et g deux fonctions définies de X & valeurs dans R.

Définition 1.33. On appelle somme épigraphique ou inf-convolution de f et g la fonction

notée fOg : X —> R et définie par :

(fog)(x) = inf{f(u) + g(v) : u+v=x}.
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Remarque 1.18.

(7)) A I’aide d’un changement de variables, on a :

(fOg)(x) = inf{f(x —u) + g(u) : ueR}
= inf{f(u) + g(x —u) : x € R} = (gOf)(x).

(if) Le domaine et I’épigraphe strict de la somme épigraphique sont donnés par

dom(fOg) = dom(f) + dom(g),

epi,(fOg) = epi, f + epi,g.

Si au lieu de minimiser la somme de deux fonctions on minimise le maximum des deux

fonctions, on définit une autre fonction.

Définition 1.34. On appelle max-convolution ou conjugaison par tranche de f et g la

fonction notée fag : X —> R et définie par :

(fag)(x) =inf{f(u) Vgv) : u+v=uxj
=inf{max(f(u),g(v)) : u+v=x}.

Remarque 1.19. On vérifie que
dom(fag) = dom(f) + dom(g),

VreR, [fag<r]l=[f<r]l+[g<Tr]

La propriété suivante donne un résultat sur la convexité de 1’inf-convolution et du max-

convolution.

Propriété 1.9 ([69]). Si les fonctions f, g sont convexes et propres alors :
(i) fOg et fAg sont convexes,
(ii) inf fOg = inf f + inf g,
(iii) inf fAg =inf f V inf g.

Proposition 1.16 ([47]). Si f est s.c.s, alors fOg est s.c.s pour toute fonction g : X —> R.
Nous rappelons la notion d’inf-compacité utile en optimisation.

Définition 1.35. On dit que f : X — R est inf-compacte si pour tout r € R, la tranche

inférieure de f de niveau r est compacte.
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Remarque 1.20. Si X est séparé, les compactes sont fermés et donc toute fonction définie
de X & valeurs dans R, inf-compacte est s.c.i.
Propriété 1.10 ([47]). Les fonctions inf-compactes vérifient les propriétés suivantes :

(i) une fonction inf-compacte admet un minimum. De plus, si elle ne prend pas la

valeur —oo, alors elle est bornée inférieurement,
(ii) toute fonction s.c.i minorée par une fonction inf-compacte est inf-compacte,

(iii) si f et g sont deux fonctions a valeurs dans | — oo, +0], [’'une inf-compacte, [’autre

s.c.i et bornée inférieurement alors f + g est inf-compacte,
(iv) l’enveloppe supérieure d’une famille quelconque (respectivement I’enveloppe inférieure
d’une famille finie) de fonctions inf-compactes est inf-compacte.

Le résultat suivant assure la semi-continuité inférieure d’une fonction marginale.

Lemme 1.6 ([47]). Soit U un espace compact et ¢ : X X U — R une fonction s.c.i sur

I’espace produit X x U. Alors la fonction marginale ¢ : X — R définie par
p(x) = mi(}l ¢(x,u), ¥x€X,
ue
est s.c.i sur ’espace X.

Proposition 1.17 ([47]). Si f et g sont deux fonctions a valeurs dans | — oo, +o0] telles
que f est inf-compacte, g s.c.i et bornée inférieurement. Alors, la fonction fOg est s.c.i et
bornée inférieurement. De plus cette inf-convolution est exacte, c’est-a-dire que l’inf est

atteint.

Exemple 1.11. Si A est une partie compacte de X et B une partie fermée de X et si les
fonctions indicatrices iy et ip satisfont les hypotheses de la Proposition 1.17, on en déduit

que iyOip = is4p €St s.C.1; par conséquent que I’ensemble A + B est fermé.

Proposition 1.18 ([47]). Si X est séparé alors [’ensemble des fonctions inf-compactes a

valeurs dans | — oo, +00] est stable pour l’inf-convolution.

1.1.7 Calcul sous-différentiel

1.1.7.1 Fonction conjuguée
Dans cette sous-section, X est un R-espace vectoriel topologique, X* son dual topologique
et f une fonction de X dans R. On note le crochet de dualité ¢, ) associé a X et X* et qui

est défini par :
Vxe X, x" e X", x"(x) =", x).
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On considere I’ensemble des fonctions affines continues minorant la fonction f

c’est-a-dire I’ensemble des formes linéaires x* € X* et des réels a, tels que
(X, x)—a < f(x), VYxeX,

qui est équivalente a

a = sup{(x', x) = f(0).

xeX

Pour x* fixé dans X*, le plus petit @ vérifiant I’inégalité précédente est

= sup{(x”, x) — f()}.

xeX

Définition 1.36. On appelle transformée de Fenchel ou conjuguée de Fenchel de la fonc-

tion f, la fonction f* : X* — R définie par

ST (x) = sup{{x”, x) — f(0)}, Vx" e X"

xeX

Remarque 1.21. En utilisant la convention inf () = +oco on a

Ff(x) = sup {(x%,x)— f(x)}, Vx* e X"
xedom(f)

Définition 1.37. Pour une fonction 4 : X* —> R on définit de maniére similaire la
conjuguée de Fenchel par
h*(x) = sup {{x*, x) — h(x")}, Vx€X.
x*eX*

La remarque ci-dessus est aussi valable pour la conjuguée de A.

La conjuguée de Fenchel d’une fonction vérifie certaines propriétés.

Théoreme 1.8. Soient f,g: X — Rh:Y—Retk:X* —R, ona:
(i) f* est convexe et w*—s.c.i (faiblement semi-continue inférieurement),
(ii) k* est convexe et s.c.,

(iii) f vérifie I'inégalité de Young-Fenchel :
Yxe X,Vx" € X*, ff(x") + f(x) = (x", x),

(v) f<g = g <[,

(v) sia >0 alors (af) (x*) = af*(a”'x*) pour tout x* € X*,

(vi) si B # 0alors (f(B.)"(x*) = f*(B~'x*) pour tout x* € X*,

(vii) si xg € X et g(x) = f(x+ xo) pour x € X, alors g*(x*) = f*(x*) — (x", Xo),
(viii) si xy € X" alors (f + x3)"(x*) = f*(x* — x;) pour tout x* € X",
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(ix) si f, h sont propreset ® : X X Y — R, O(x, y) := f(x) + h(y), alors
O*(x*,y") = f*(x*) + h*(y*) pour tout (x*,y*) € X* X Y,
(x) (fog) = f"+g"

Preuve.

(i) Si f n’est pas propre alors f* = 400 ou f* = —oo, donc f* est constante et par
conséquent f* est convexe et w*-s.c.l.

Si f est propre, alors on a

ff(x) = sup @.(x),
xedom(f)

avec la fonction ¢, : X* — R définie par

@u(x") = (x", %) = f(x).

Il est clair que pour tout x € dom(f), ¢, est affine donc convexe, de plus ¢, est
w*-continue par définition donc w*-s.c.i. Par conséquent, f* est convexe et w*-s.c.i en
tant que supremum d’une famille de telles fonctions.

(if) (ii) est la version duale de (i) par conséquent on raisonne de maniere analogue qu’au

niveau de (7).

(iii) On a
Vx' e X', ff(x") =sup{(x’, x) — f(x)} = (X", x) — f(x), VxeX.
xeX
= VYxeX,Vx" e X", f'(x")+ f(x) =, x).
(iv) Ona

YxeX, f(x) <glx) = (X", x)— f(x) = (x",x) —g(x), Vx" eX*
= ff(x") = g"(x"), Vx' eX.

(v) Soit @ > 0, pour tout x* € X*,

(af)"(x7) =sup{(x", x) — af(x)}

xeX

1
=a SUP{<ax*,X> - f(0)}

xeX

=af*(%).
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(vi) Soit 8 € R*, pour tout x* € X",

(f(B))"(x") =sup{(x", x) — f(Bx)}

xeX

L
=sup((x', 230 = f0)

yeX

=(f)*(éx*)-

(vii) Soit xp € X, on a g(x) = f(x + xp) alors

Yx' e X7, g'(x7) = sup{(x”, x) — f(x + x0)}

xeX

=sup{{x",y — x0) — f()}
yeX

=sup{{x",y) — fFM)} = (x", x0)
yeX

=f7(x7) = (x", x0).
(viii) Six; € X* alors

(f + xp)"(x") = sup{{x*, x) = f(x) + (x5, x)}

xeX

=sup{(x” — x;, x) — f(x)}

xeX
:f*(x* — xé), vx* € X*

(ix) Si f,h sont propreset® : X X Y — R, O(x, y) := f(x) + h(y), alors

Q' (x",y) = sup {(x7,y"), (x,y) = f(x) = h(YN}

(x,y)EXXY

= sup {(x",x)— f(0)+ Oy — h())}
(x,y)eXXY

=sup{(x", x) = f(x)} + sup{(y*, y) — h(y))}
xeX yey

=ff(xX)+h(), Y,y)eX xY

(x) Ona
(fog)'(x") = su§{<x*, x) — ig)@{f ) +gx =
= sup {{x",x) = f(y) — gx - )}
(x,y)eXXX
= sup {(x",z+y) - f(y) —g@)}
(z,y)eXxX

=f"(x") + g (x"), VYx'eX".
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Dans la suite on note I'y(X) I’ensemble des fonctions f : X — R convexes, s.c.i et

propres et Io(X*) I’ensemble des fonctions / : X* — R convexes, w*-s.c.i et propres.

Corollaire 1.12. Soient f : X — R une fonction, alors les assertions suivantes sont

équivalentes :

(i) f*elo(X)
dom(f) # 0
)
dx*e X', aeR:VxeX, f(x) = (" x)+a.

Preuve.
Si f* e I')(X™), alors dom(f) # 0 et Ax* € X*, @ € Rtels que f*(x*) = —a.

ffX)=-a =& x)-f(x)<-a VxeX

= f(x) > x)+a, VYxeX
Inversement supposons (ii) vérifiée.
D’apres (i) du Théoreme 1.8, f* est convexe et w*-s.c.i. Comme f(x) > (x*, x) + a, alors
", x) - f(x) < —a, xeX,Vx' e X"

= f(x") = sup{{x", x) — f(x)} £ —a@ < 400, Vx" € X"
xeX

Comme dom(f) # 0, alors
—oo < fH(x%), VYx'eX'.

Le résultat suivant est fondamental en théorie de la dualité.
Théoreme 1.9 ([18], [31],[69]). Soit f € To(X), alors f* € To(X*) et f* := (f*)" = f.

Propriété 1.11. Soient f; : X — R, i € I (I un ensemble d’indices) une famille de

fonctions. On définit la fonction in[f fi par
1€
(inf f)(x) = inf fi(x);
i€l i€l
alors

(inf f)* = sup f;"
1€

iel
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Preuve.

En effet, pour tout x* € X", on a:

(inf £ (x") = sup{(x', x) — inf £i(x))

xeX

sup sup{({x*, x) — fi(x)}

xeX el

sup {{(x7, x) = fi(x)}

xeX,iel

sup sup{(x*, x) — fi(x)}

iel xeX

sup f;(x").

iel

O

Définition 1.38. Considérons le sous-ensemble A C X non vide ; la fonction support de A

est notée et définie par o4 : X* — R,
oa(x") = sup{(x*,x) : xe€ A}, ¥Vx" € X".
Pour C C X* non vide, on définit de maniere analogue la fonction support de C.

Propriété 1.12 ([18],[69]). La fonction support vérifie :
(i) o4 estw*-s.c.i,

(i1) si B C X est un autre sous-ensemble non vide de X alors

Opap=04+0peroaup =04V 0opg;

(iti) oa(x") = ((a)"(x") = sup(x’, x) = (iza)"(X") = Oa(x’), Vx* € X7,
XECOA

(iv) dom(o ) = dom((iy)*) = {x* € X* : sup(x", x) < +oo}.

x€A

1.1.7.2  Sous-différentiel
Dans cette sous section, X est un R-espace vectoriel localement convexe et séparé.

Définition 1.39. Soient f : X — Ret X € X tel que f(x) € R . Un élément x* € X* est

appelé sous-gradient de la fonction f en X si on a la relation suivante :
Yxe X (X", x=x) < f(x)— f(X). (1.4)
L’ensemble de tous les sous-gradients de la fonction f en X est noté df(x), c’est-a-dire :
Ifx) ={x" e X | (x",x=%) < f(x) — f(X), Yxe X} (1.5)

et est appelé sous-différentiel ou sous-différentiel de Fenchel de f en X.
f est dite sous-différentiable en x € X, si df(x) # 0.
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Remarque 1.22. 0 € df(x) si et seulement si f(x) < f(x) Vx € X et donc x réalise le

minimum de f : X — R équivaut 2 0 € 9f(%).

Le lemme suivant donne une caractérisation du sous-différentiel.

Lemme 1.7. Pour x € X, si f(x) € R, alors

X edf(x) = f1(x) + f(x) = (X", X). (1.6)
Preuve.
On a
Xedfx) = (X, x—x) < f(x)— f(x), VxeX

= f(x) -1 < f(x) - (xFx), VYxeX

= (&) + [ <X, X)

= ff(xX) + f(D) = (X", %),
car I’autre inégalité est celle de Fenchel. O

Lemme 1.8. Soient f : X — Retxe X :

(i) sidf(x) #0, alors f(x) = f*(x),
(ii) si f**(x) € R, alors

of " (x)={x" e X" : (X", x) - f(x) = slu)l(o*{<x*,X> - fF (Y,

(iii) si f(x) = f*(x) € R, alors 0f(x) = f*(x).

Preuve.
(i) On a
0f(x) #0 = Ax" e X" : fF(x") + f(x) = (x", x)
= f(x) =" x0) - f1(x)
& f(x) < [T (x)
= f(x) = "),
car f* < f.

(ii) 1l suffit d’appliquer (1.6) a la fonction & = f**.
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(iii) si f(x) = f*(x) e R,ona

X eI =S (XLy -0 < ) - T, YyeX
S W y-0 <o) - fx), VyeX
= U, y-0 < f)-fx), VyeX
= x* € df(x) = If*(x) C f(x).

On a

X edf(x) = x,y-x<fO)-f"(x), VyeX
= [+ y-0) < f(), YyeX
Soit h(y) = f(x) + (x*,y — x), h(y) est une minorante affine de f exacte au point x.

Puisque la biconjuguée est le supremum des minorantes affines, alors A(y) est aussi

minorante affine de f** exacte au point x. Donc x* € df**(x).

O

De maniére analogue on définit le sous-différentiel d’une fonction # : X* — R en un

point x* € X* avec h(x") € R par :
Oh(xH) ={xeX|Vx' € X", (x" =X, x) < h(x*) — h(x")}.

Lemme 1.9. Si f : X — R est une fonction s.c.i propre, x € dom(f) et x* € X*. Alors

les relations suivantes sont équivalentes :
(i) x* € df (),
(ii) x € Af"(x"),
(iii) f(x) + f7(x7) = <x", x).

Preuve.

(i) est équivalente a (i) par définition et I’équivalence entre (i) et (iii) découle de (1.6). O
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1.2 Quelques notions sur I’optimisation

Dans cette section apres avoir présenté le concept de probléme d’optimisation, nous rap-

pelons une théorie de construction de probleme dual.

1.2.1 Probleme d’optimisation

Soient un ensemble quelconque X, une fonction f : X —s R et K un sous-ensemble de
X. Un probleme d’optimisation consiste a chercher une variable physique ou de décision

ou de commande de facon a optimiser (minimiser ou maximiser selon le cas) :
(i) un critere physique (action, énergie, . . . ),
(i) un critere technique (précision, stabilité, durée, . . . ) ou
(iii) économique (coft, rentabilité,. . . ),
tout en respectant certaines contraintes liées a la situation considérée.
Mathématiquement on peut modéliser un probleme d’optimisation par :

(P) minimiser f(x), s.l.c x € K,

ou f : X — R est une fonction, X un ensemble, K un sous-ensemble de X et s.l.c signifie
”’sous les contraintes”.

Le probleme est caractéris€ par :
(i) la fonction f appelée fonction objectif ou critere ou fonction économique,
(ii) 'ensemble K appelé ensemble des contraintes,
(iii) ’ensemble S (P) = K N dom(f) appelé I’ ensemble admissible ou réalisable,

(iv) la valeur du probleme notée val(P) ou inf(P) est définie par :
val(P) = inl’[; f(x) = inf{f(x) : x € K}. L’ensemble des solutions optimales est
RS
notée Argmin(P) = {x € X : f(x) = val(P)}.

Remarque 1.23. La maximisation d’une fonction,
maximiser f(x), s.l.c x €K,
peut se ramener a I’opposé du probleme de minimisation suivant :
minimiser (—f(x)), s.l.c x € K.
Généralement I’ensemble K s’écrit sous la forme :
K={xeX : gx)eC}
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ou g est une fonction de X dans un ensemble Y et C un sous-ensemble de Y. Selon la
nature des données, le probleme d’optimisation porte plusieurs noms. Supposons que X
et Y sont des espaces vectoriels, alors :
(i) si K et f sont convexes, le probleme (P) est dit convexe,
(ii) sil’ensemble K est un cOne, alors (P) est un probleme d’optimisation conique et en
particulier :
si K et f sont convexes, on parle de programmation convexe conique. Si de plus les
données sont incertaines le probleme est dit convexe conique incertain ;
- si f et g sont affines, Y = R” et C I’orthant positif, on parle de programmation
linéaire ;
- si f est quadratique, Y = R” et K le cone de Lorentz, on parle de programma-
tion quadratique ;
- si f estaffine, Y = S" et K le cone des matrices semi-définies positives, on

parle de programmation semi-définies positives.

1.2.2 La théorie de la dualité

La dualité est une technique couramment utilisée en optimisation dont I’'idée est la sui-
vante : étant donné un probleme d’optimisation appelé primal, on lui associe un autre
probleme appelé dual dont la valeur est une minorante de celle du primal. En général, la
question est de savoir quand avons nous 1’égalité (zero dualité ou saut de dualité nul) entre
les valeurs des deux problemes et comment passer de 1’ensemble des solutions optimales
de 'un des problemes a celui de 1’autre ? Une méthode de construction du dual est la

dualité par perturbation qui utilise la conjugaison de Fenchel ([18], [55]).

1.2.2.1 Méthode de construction du dual par perturbation ([15], [55])
Considérons le probleme de minimisation suivant :
minimiser f(x), slc xe€X, (2)

ou X est un espace vectoriel topologique et f : X — R est une fonction. On se donne
un autre espace vectoriel topologique Y (appelé espace des perturbations) et une fonction
F : X x Y — R vérifiant

F(x,0y) = f(x), VxeX. (L.7)

La fonction F' s’appelle fonction de perturbation associée au probleme ().

I1 résulte immédiatement de (1.7) que le probléeme (&) s’écrit aussi :

minimiser F(x,0y), sl.c xeX. ()
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On appelle dual par perturbation du probleme (), le programme suivant :
maximiser (—F*(0x-,y")), s.lc y' eY”, (2)

otl F* : X* X Y* — R est la conjuguée de Fenchel de F.

D’apres I’inégalité de Young-Fenchel, pour tout x € X et pour tout y* € Y*, on a

F(x’ OY) + F*(OX*’y*) Z <(-x’ OX*), (OY’y*)> = O — F(x9 OY) Z _F*(OX*’y*)'

— o0 < val(2) < val(&) < +o0. (1.8)

La propriété (1.8) s’appelle dualité faible. 11 existe dans la littérature plusieurs types de
conditions de qualification pour obtenir 1’égalité val(Z) = val(<?) avec le dual admettant
au moins une solution optimale. Dans la sous-section suivante nous donnons un exemple
de probleme d’optimisation avec une fonction de perturbation correspondante (pour plus

d’exemples, on peut se référer a [55], [69]).

1.2.2.2 Exemple : probleme conique

Considérons le probleme suivant :
minimiser f(x), s.d.c xe Cet g(x) € (—K), (Z,)

ounf:X— R est convexe, C C X est un convexe, K est un cone convexe fermé non vide
de Y qui est un espace vectoriel topologique et g : X — Y est une fonction convexe dans
le sens que g(Ax + (1 — D)x") —Ag(x) — (1 - Dg(x’) e K, Vx,x' € X,VY1¢€]0; 1[.
Le probleme (<) est un probleme d’optimisation convexe conique.
On associe au probleme (Z2,), la fonction de perturbation (verticale) ¢ : X X ¥ — R,
définie par
f(x) sixeCety—gx)eK
¢(x,y) =

+00  sinon.

Par un calcul direct, on obtient pour y* € Y*,

infl £+ (800,07} iy € K-
_¢*(0X* > y*) =

—00 sinon ,

K':={y"eY" | (¢',y» >0, Vye K},
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désigne le cone polaire positif du cone K. Le dual par perturbation correspondant est alors
défini par
Maximiser in’cf{f(x) +(g(x),y"}, slc y eK". (Z.)
X€E!

Remarque 1.24. Un cas particulier du probléme convexe conique est le probleme de pro-

grammation convexe suivant.

minimiser f(x) slcxeX, gx)<0, Vi=1,...,n, (1.9)

ou X est un R-espace vectoriel, f,g1,82,...,8:, : X — R sont des fonctions convexes
propres telles que dom(f) ((N'_,dom(g;)) # 0.

La fonction de perturbation ¢ : X X R” — R associée au probleme (1.9) est définie par :

ou les y; sont les composantes du vecteur y.

Par suite, le probleme paramétré de parametre y € R” associé au probleme (1.9) est :

minimiser ¢(X, y) = f(X) + i{(X,y)EXXR”:g,-(x)Sy,-, Yoi=1,..., n}(x, y), slcxeX. (110)
Ona
* * inf {f(x) + Zy,- gi(x)} siy" €R]
_¢ (OX*sy ) = =1
—00 sinon ,
avec yi,i=1,...,n, les composantes de y*.

Le probleme dual par perturbation (ou dual Lagrangien) associé au probleme (1.9) est :

maximiser inf {f(x) + Zy;-kg,-(x)} , slcy eRl. (1.11)
xeX

i=1
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CHAPITRE 2

Dualité pour des problemes paramétriques

2.1 Introduction

La théorie de la dualité est importante en optimisation sous contraintes et a €té long-
temps étudiée. La dualité de Fenchel permet de transformer un probléme initial (probleme
primal) en un probleme d’optimisation sur ’ensemble dual (probleme dual). Dans cer-
tain cas, les problemes duaux sont plus faciles a résoudre que les problemes primaux
([271, [30]). On sait que la valeur du probleme dual est toujours inférieure a la valeur du
probléme primal. Un objectif en analyse convexe est de donner des conditions suffisantes
garantissant la dualité forte c’est-a-dire la situation ou il n’y a pas de saut de dualité et
ou le probleme dual a au moins une solution optimale. Plusieurs conditions sont données
dans le but de prouver I’existence de tel saut de dualité dans divers cadres ([19], [34],
[55], [69D).

Dans ce chapitre nous donnons des conditions de qualifications de type intérieur et ferme-
ture garantissant des résultats de dualité forte d’un probleme paramétrique. Nous donnons
aussi les versions duales de nos résultats de dualité forte ([5]). Nous appliquons ensuite
ces propriétés de dualité forte a la minimisation du maximum de deux fonctions convexes.

Dans ce cas nous généralisons des résultats de dualité forte obtenus par Traoré-Volle

([65D).
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2.2 Dualité en optimisation convexe dans les espaces vec-
toriels topologiques

Dans la suite, U désigne un R-espace vectoriel topologique.

Le lemme suivant nous sera utile pour la suite.

Lemme 2.1 ([47]). Soit f : U — R une fonction convexe et majorée au voisinage d’un
certain point de U. Alors, soit f(u) = —co Yu € int(dom(f)) soit f est sous-différentiable
sur int(dom(f)).

Preuve.
On obtient le résultat en remarquant que pour tout A C U, si int(A) est non vide et A
convexe alors int(A) = A* = A" ou int(A) est I’intérieur topologique de A puis, on utilise

les lemmes ci-dessous pour conclure. O

Lemme 2.2 ([4], [69]). Soit f : U — R une fonction convexe. S’il existe uy € U tel que
f(up) = —o0 alors f(u) = —oo pour tout u € (dom(f))".

Lemme 2.3 ([4], [47]). Soit f : U — R une fonction convexe. Si f est majorée au
voisinage d’un certain point de U, alors f est continue sur l’intérieur de son domaine
int(dom( f)).

Lemme 2.4 ([47]). Une fonction convexe f : U —s R est sous-différentiable en chaque

point o elle est finie et continue.

2.2.1 Résultats de stabilité

Soient X et Y deux espaces vectoriels topologiques, X* et Y* leurs duaux topologiques
respectifs, y € Y. Considérons la fonction convexe F : X x ¥ —s R et le probleme
paramétrique

minimiser F(x,y), slcxeX. (Py)

Associons a la fonction F, la fonction marginale 2 : Y — R, définie par
h(y) = in)iz F(x,y) = inf(P)).
XE.

Il est clair que
h* = F*(Ox-,.). 2.1

Pour construire le dual de (Py) ; introduisons la fonction de perturbation (horizontale)
Gy: XXY— R définie par

Gy(x,u) = F(x,y +u), Y(x,u)e XxY. (2.2)
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Par un calcul direct, on a :
Gy(Ox+,u*) = F*(Ox-,u") —u’,y), VYu' €Y.
Le probleme dual perturbationnel du probleme (Py) est donc :
maximiser — G;(OX*,y*), slc y €Y, (Dy)
soit plus explicitement
maximiser (y*,y) — F*(Ox,y"), slcy € Y™ (Dy)
Nous savons que la dualité faible est toujours vérifiée c’est-a-dire :
— oo < sup(Dy) = h™(y) < h(y) = inf(Py) < +oo. (2.3)

Remarque 2.1. En considérant I’ensemble des solutions optimales du probleme (D,) pour

un certainy € Y,
Argmin(Dy) :={y" € Y" [ (y",y) = F"(0x-,y") = sup(D,) € R}

et en appliquant le Lemme 1.8, (ii) a la fonction marginale 4 on obtient

Argmin(Dy) = 0h™(y).

Lemme 2.5. En considérant la fonction marginale h associée au probleme (Py), on a

I’équivalence entre les deux assertions suivantes :
(i) Oh(y) # 0,
(ii) inf(Py) = max(Dy) € R c’est-a-dire in}g F(x,y) = ma;x{(y",y) — F*(Ox-,y)} e R
X€ y*ey*
Preuve.

Soit y* € dh(y) # 0. En utilisant la caractérisation du sous-différentiel dans le Lemme 1.7,

ona:

Y € 0h(y) &= h*(y") + h(y) = (y",y)
= h(y) =%y - Q).
Ainsi,
inf(Py) = h(y) = (", y) = h" (") = (", y) = F*(Ox-,y") < sup(D,)

et on conclut en utilisant la dualité faible (2.3). |
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Définition 2.1. Le probleme (P,) est dit stable si I'une des conditions équivalentes du

Lemme 2.5 est satisfaite.
Le théoreme suivant donne une condition assurant la stabilité du probleme (Py).

Théoreme 2.1. Si la condition suivante est vérifiée
AreR : int(Pry[F <1]) # 0, (2.4)
alors, soit
glea;g{(y*,w — F'(Ox,y)) =inf F(x,y) €R, ¥y € int(Pry(dom(£))),
soit
—F*(Ox,y") = }Clel}; F(x,y) = —00, Vy € int(Pry(dom(F))) et Vy* € Y™.

Preuve.

Soit la fonction A(y) = irel)g F(x,y), h étant la fonction marginale associée a la fonction
convexe F, elle est donc convexe d’apres le Théoreme 1.2. Soit un réel ¢ pour lequel
I’hypothese (2.4) est vérifiée. Prenons y € int(Pry[F < ¢]), alors il existe un voisinage
V e A4(y) dans Y tel que :

VyeV,dxe X: F(x,y) <t.

Pour touty € Y,on a:
h(y) < F(x,y), Yx€X,

d’ou
h(y) < F(x,y)<t, VyeV.
Ainsi, h est majorée au voisinage de y et d’apres le Lemme 2.1, soit

oh(y) # 0, Yy € int(dom(#)) = int(Pry(dom(F))),

soit
h(y) = —o0, Vy € int(Pry(dom(F))).

Dans le premier cas, le Lemme 2.5 donne I’égalité
glgg{(y*,w = F*(Ox-,y)} = inf F(x,y) € R, Vy € int(Pry(dom(F))).
Dans le second cas, en utilisant la dualité faible (2.3), on déduit que pour chaque y € Y,
"y = F'(Ox,y") < h(y), Yy e Y.
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Il en résulte que
h(y) = =00 = (y",y) = F*(Ox:,y") = —c0o = —F*(0x:,y") = —o0.
D’ou —F*(0x+,y") = h(y) = —o0, Vy € int(Pry(dom(F))) et Vy* € Y*. O

Remarque 2.2. La condition (2.4) est en particulier vérifiée s’il existe (x,y) € dom(F) tel

que F(x,.)ests.c.seny.

Corollaire 2.1. Supposons que :

dreR : 0y € int(Pry[F <1)]). (2.5
Alors,
—oo < max{—F"(0x-,y")} = inf F(x,0y) < +o00.
y*eY* xeX
Preuve.

D’apres (2.5), h(0y) # +oo. En prenant y = Oy dans le Théoreme 2.1 on obtient le résultat.
O

Nous allons réduire 1’ensemble de la condition (2.4). Pour cela, nous aurons besoin du
lemme suivant qui est beaucoup plus utilisé pour des espaces vectoriels topologiques loca-
lement convexes et séparés (e.v.t.1.c.s) ; mais ce lemme est aussi valable méme si I’espace

n’est pas séparé ([20]).

Lemme 2.6 ([20]). Soit [ une forme linéaire continue définie sur un sous-espace vectoriel
d’un espace vectoriel topologique localement convexe (e.v.t.l.c) Y ; il existe alors une

forme linéaire continue définie sur Y et prolongeant L.

Soit W un sous-espace vectoriel d’un espace vectoriel topologique U. Si A est un sous-
ensemble de W, nous notons inty(A) I’intérieur topologique de A relative a la topologie

induite sur W par la topologie de U.

Lemme 2.7. Soit U un e.v.tlc, f : U — R une fonction convexe, W = vect(dom(f))

I’espace vectoriel engendré par dom(f) dans U. Si
dreR : inty([f <t]) #0, (2.6)

alors, soit
f(u) = —oco0,  Vu € inty(dom(f)),

soit

Of(u) #0, Vu € inty(dom(f)).
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Preuve.
Soit k la restriction de la fonction f sur W.

Soit u € inty ([ f < t]) = inty([k < t]). Il existe un voisinage V € A4 (u) dans W tel que :
YueV, k(u)<t,
par conséquent k est majorée au voisinage de u. D’apres le Lemme 2.1 soit
k(u) = f(u) = —oo, Yu € inty(dom(k)),

soit
ok(u) # 0, Yu € inty(dom(k)).

Soient v € inty(dom(f)) et w* € 9k(v). D’apres le Lemme 2.6, il existe une forme linéaire

continue u* € U* prolongeant w* sur U. Du fait que w* € 0k(v), pour tout u € W, on a
k(u) > k(v) + {w*, u —v).

Il en résulte que pour tout u € W
f) = fv)+ W u—v).

Comme dom(f) € W alors f(u) = +oo pour tout u € U\ W et il vient que pour toutu € U,
f) > fOv) + W u—v).

Par suite, u* € df(v) et donc df(v) # @ pour tout v € inty(dom(f)) . O

Théoreme 2.2. Si X est un ev.t, Y un ev.itlc, F : X XY — R une fonction convexe,
W = vect(Pry(dom(F))) et si :

At e R :inty(Pry([F < 1]) # 0, (2.7)
alors, soit
g{lea;g{<y*,y> = F'(Ox,y)) =inf F(x,y) €R,  Vy € inty(Pry(dom(F))),
soit

—F*(Ox,y") = in; F(x,y) = —oo, Yy € inty(Pry(dom(F))) etV y* € Y*.
X€E
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Preuve.

Soit la fonction convexe i : ¥ — R définie par A(y) = in}g F(x,y), Yy € Y. Comme (2.7)
xe

a lieu, choisissons v € inty(Pry([F < f])). Il existe un voisinage V de v dans W tel que

pour tout y € V, il existe x € X tel que
F(x,y) <t

Puisque
h(y) < F(x,y)
on a
h(y) <t VyeV.

En appliquant le Lemme 2.7 a la fonction & avec W = vect(dom(h)) = vect(Pry(dom((F))),
on a soit
oh(y) # 0, Vy € inty(dom(h)),

soit
h(y) = —co, ¥y € inty(dom(h)).
En utilisant le Lemme 2.5 dans le premier cas, on a :
gleagg{(y*,w — F'(Ox.y)} =inf F(x,y) €R, Yy € inty(Pry(dom(F)))
et dans le second cas, la dualité faible (2.3) appliquée a (P,) donne
—F*(Ox:,y") = }clel)g F(x,y) = —c0, Yy € inty(Pry(dom(F))) etV y* € Y™.
O

Si X est un espace vectoriel normé (e.v.n) on peut enrichir les résultats précédents. Dans
ce cas, notons par || || la norme sur X, || ||. la norme duale associée et By la boule unité

fermée de X. L’inégalité de Cauchy-Schwartz s’énonce par
K™, 0 < IV lldixdl, - Y(x, x7) € X x X7 (2.8)

Théoreme 2.3. Soit X un evnetY unevt, F : X XY — R une fonction convexe.

Supposons que :
dreR,r>0:mntPry([F <t]NrBx X Y)) # 0, (2.9)
alors, pour chaque x* € X*, soit
gleayzg{(y*,y) = F ()0} = inf{F(x,y) = (x", )} €R, Yy € int(Pry(dom(F))),
soit

—F*(x",y") = in)lj{F(x, y) — (X", x)} = —00, Yy € int(Pry(dom(F))) et Vy* € Y™.
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Preuve.

Soit x* € X*, considérons la fonction A+ : ¥ —> R, définie par

he () = Inf(F(x,y) = (', ).

h,~ est convexe car fonction marginale de la fonction convexe (x,y) — F(x,y) — (x*, x).
Comme la condition (2.9) est vérifiée, choisissons v € int(Pry([F < t]NrBx xY)). Il existe

un voisinage V € 4y(v) dans Y tel que :
Vy e V,dx € rBy : F(x,y) <t
On en déduit que

hye(y) < F(x,y) = (x", x)
<t—{(x",x)
<t-{(x"Xx)

< t+r|x*|l. (d’apres (2.8)).

La fonction A, est donc majorée dans le voisinage V et d’apres le Lemme 2.1,

soit
Oh(y) # 0, Yy € int(dom(/,)),
soit
he(y) = —00, Vy € int(dom(h,+)).
On a
dom(h,-) = Pry(dom(F — {(x",.))) = Pry(dom(F)),
d’ou

int(dom(h,:)) = int(Pry(dom(F))).

D’apres le Lemme 2.5,

Oh,(y) # 0, Vy € int(dom(h,-)) est équivalent a
inf{F(x, y) - (X', 0} = mayXKy*,y) - F'(x",y)} €R, Yy € int(Pry(dom(F))).
X€E yrey*

Dans le deuxieme cas, on a

hy(y) = =00, Vy € int(dom(h,)) = h.(y") = +oo, Yy eY”
— F*(x*,y*) = 400, Vy* ey

On conclut en utilisant la dualité faible (2.3). O

43



2.2. DUALITE EN OPTIMISATION CONVEXE DANS LES ESPACES VECTORIELS TOPOLOGIQUES

Remarque 2.3. Le résultat précédant montre qu’on peut obtenir la stabilité du probleme

(Py) dans le cas ou on ajoute a la fonction objectif, une forme linéaire continue.

Tout comme dans le Théoreme 2.2, en considérant le sous-espace vectoriel

W = vect(Pry(dom(F))), on obtient le résultat suivant.

Théoreme 2.4. Soient X un espace vectoriel normé, Y un espace vectoriel topologique,

F:XxY — Rune fonction convexe et W = vect(Pry(dom(F))). Supposons que
At e R, r>0:inty(Pry([F <t]NrBx xY)) #0, (2.10)
alors pour chaque x* € X*, soit
gleayﬁg{(y*,y) — F(5y0) = inf{F(x,y) = (3, 0y e R, Vy € inty(Pry(dom(F))),
soit
—F*(x",y") = ig{F(x’ y) —{x*, x)} = —oo, Yy € inty(Pry(dom(F))) et Vy* € Y*.

Preuve.

Soit x* € X*, considérons la fonction A, définie sur Y par
hy(y) = inf{F(x,y) — (x", 0)}.
xeX
D’apres la condition (2.10), choisissons
Ve intw(Pry([F < t] N FBX X Y))
Il existe un voisinage V de v dans W tel que pour tout y € V, il existe x € rBy tel que
he(y) < F(x,y) = (x%, x) < 1+ x|l

En appliquant le Lemme 2.7 a la fonction A,-, on a

soit
Oh,(y) # 0, Yy € inty (Pry(dom(F))),
soit
hy(y) = —oo0, Vy € inty(Pry(dom(F))).
On conclut en utilisant le Lemme 2.5 et la dualité faible (2.3). m|

Définition 2.2. Etant donné deux sous-ensembles A et B d’un espace vectoriel topolo-

gique, on dit que A est fermé par rapport A BsiAN B = AN B.
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Définition 2.3. Soit X une.vitet f : X — R, une fonction, on appelle enveloppe semi-

continue inférieure de f, le supremum des minorantes s.c.i de f; on la note par f.

Propriété 2.1 ([69]). Ona :
FO0) = (),

ou pour toute partie A de X X R, la fonction ¢, : X — R est définie par
pa(x) =inf{t : (x,1) € A}

On utilisera dans la suite les notations suivantes :

(i) Si A est un sous-ensemble d’un espace vectoriel topologique X. On note A 1a
fermeture de A par rapport a la topologie faible o(X, X*) de X. On écrit que A est

w-fermé pour dire que A est faiblement fermé par rapport a la topologie o (X, X*).

(i) Si B est un sous-ensemble de X, on note Ew* la fermeture de B par rapport a la
topologie faible * o(X*, X) de X*. On €écrit que B est w*-fermé pour signifier que B

est faiblement fermé par rapport a la topologie o(X*, X).
Le résultat suivant généralise le Théoreme 9.1 de [15] dans le cas d’espaces topologiques

localement convexes non nécessairement séparés.

Théoreme 2.5. Soient X et Y deux ev.tlc, F : X X Y —> R une fonction convexe s.c.i
propre et A un sous-ensemble non vide de X*. Supposons que Oy € Pry(dom(F)). Alors

les assertions suivantes sont équivalentes :

(i) —oo < sup{(x*,x) — F(x,0y)} = migl F'(x*,y") < +00, Vx" €A,
xeX yrerr

(ii) Pry-r(epiF™) est w*-fermé par rapport a I’ensemble A X R.
Pour la preuve de ce théoréme, nous aurons besoin du lemme suivant.

Lemme 2.8 ([31]). Soit f : U — R une fonction convexe sur un e.v.t.l.c U. Suppo-
sons que f est minorée par une forme affine continue. Alors I’enveloppe semi-continue

inférieure f de f coincide avec la biconjuguée f** de f.

Preuve du Théoreme 2.5.

Soit la fonction convexe k : X* — R définie par

k(x*) = inf F*(x*,y").
y*eY*
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Pour tout x € X,

K (x) = sup (€7, x) — inf F7(x", y")
s

x*eX*

= sup (00— FU, YY)

xreX* yrey*

:F**(X, Oy)

Comme F est convexe s.c.i et propre alors F(x,0y) = F**(x,0y) = k*(x). Par conséquent
k* est propre et admet donc une minorante affine continue. En appliquant le Lemme 2.8 a
la fonction k, on obtient %w* = k™.

Comme epi%w* = ep?w*, il en résulte que epi%w* = Wepil’*)w*.

Supposons que (i) est vérifiée.

Soit (x*,r) € (A XR) N mw*, on a k**(x*) < r. Par ailleurs

K (x") = sup{(x”, x) — k"(x)}

xeX

= sup{{x", x) — F(x,0y)}

xeX

= yme1yn F*(x*,y") (d’apres (i)).
Il existe y* € Y™ tel que F*(x*,y") < r ce qui signifie que
(x*,r) € (A X R) N Pryg(epiF™),
d’ou
(AXR)N mw C (A X R) N Pryxr(epiF*) c (AXR)N mw*.
On en déduit donc I’égalité
(A X R) N Pryom(@piF?). = (A X R) N Pryoa(epiF?).

Supposons que (ii) est vraie et soit x* € A.

Puisque Oy € Pry(dom(F)) alors
sup{(x", x) — F(x,0y)} > —oo.
xeX

Si
Sup{<X*’ x> - F(x’ OY)} = +OO’
xeX

en remarquant que pour tout (x,y") € X X Y*,ona

(-X*,x) - F(-x’ OY) < F*(X*’y*)’
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on en déduit que pour tout y* € Y, F*(x*,y") = +o0 et donc
min F*(x*,y") = +o0.
}’*GY*

Etudions maintenant le cas ol

r:=sup{(x*, x) — F(x,0y)} € R.
xeX

Dans ce cas, (x*,r) € (epik™) N (A X R) = (epi%w ) N (A X R) ce qui signifie que
(x*,7) € Pryow(epiF*) N (A XR).
Comme (ii) est vérifiée, alors
(x",7r) € (Prysxr(epiF)) N (A X R).
Il existe donc y* € Y* tel que
F* (X* , y*) S r’
ce qui donne
inf F*(x*,y") < F*(x",y") <r < inf F*(x",y").
y*GY* y*EY*
Ainsi,
r = min F*(x", y").
y*ey*
O
Nous donnons maintenant un résultat qui généralise la condition de qualification d’ Attouch-
Brézis relative a la stabilité dans les espaces de Banach.

Nous commengons par rappeler la notion de fonction quasi-continue introduite par Joly-

Laurent dans [40] et utilisée par Moussaoui-Volle dans [48].

Définition 2.4 ([48]). Soit U un e.v.t.l.c. Une fonction convexe f : U — R est dite

quasi-continue si :

(i) I’enveloppe affine aff(dom(f)) du domaine effectif de f est fermée et de codimen-

sion finie,

(1) I'intérieur algébrique relatif du domaine effectif dom(f) de f est non vide et la
restriction de f 2 aff(dom(f)) est continue sur I’intérieur algébrique (dom(f))’ du

domaine de f.
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Théoreme 2.6 ([48]). Soient X et Y deux e.v.t.l.c séparés et F : X x Y —> R une fonction

convexe. Supposons qu’il existe xo € X tel que F(xy,.) : Y — R soit quasi-continue et

R, Pry(dom(F)) est un sous-espace vectoriel de Y. Alors, pour tout x* € X*, ona :

—oo < supf{{x*, x) — F(x,0y)} = min F*(x",y") < +c0.
xeX yrerr
Théoreme 2.7. Soient X et Y, deux espaces de Banach et F : X x Y — R une fonction

convexe s.c.i et propre. Supposons que
R, Pry(dom(F)) est un sous-espace vectoriel fermé. 2.11)
Alors pour tout x* € X*,

—oo < supf{(x*, x) — F(x,0y)} = min F*(x",y") < +00.
xeX yrey*

Preuve.

Soit x* € X*, on considere la fonction convexe @ : X X ¥ —> R définie par

O(x,y) = F(x,y) — (x", x). Observons que dom(®) = dom(F) et R, Pry(dom(F)) est un
sous-espace vectoriel fermé si et seulement si Oy € (Pry(dom(®)))". La conclusion résulte
du [69, Théoreme 2.7.1, (vii)]. O

La condition de qualification d’ Attouch-Brezis [1, Theorem 1.1] est

U A(dom(f) —dom(g)) est un sous-espace vectoriel fermé (2.12)
>0

ou f et g sont deux fonctions convexes s.c.i.

On peut donc observer que la condition de qualification d’Attouch-Brezis [1, Theorem

1.1] est un cas particulier de la condition (2.11).

2.2.2 Version duale des résultats de stabilité

Dans cette sous-section, nous donnons la version duale des résultats précédents dans les
e.v.t.l.c.s. On note e.v.t.H.l.c pour dire que I’e.v.t.1.c est séparé. On rappelle que 7(X*, X)
est la topologie de Mackey qui est la plus fine topologie pour laquelle les formes linéaires
(., x), x € X sont continues sur X".

Théoreme 2.1°. Soient X un ev.t.H.l.c, Y un evitlcet F : X x Y —s R une fonction
convexe s.c.i propre.

Si la condition suivante est vérifiée
dreR : il’ltT(X*,X)(PI'Xﬂ« [F* < t]) # 0. (213)
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Alors, soit

max{(x’, x) — F(x,0y)} = inf F'(x",y") €R, Yx" € intyx- x)(Pry-(dom(F7))),
X€E yrey*

soit
—F(x,0y) = i_n£ F*(x",y") = —o0, Vx" € intyx- x)(Prx-(dom(F™))) et Vx € X.
y*e *
Preuve.
Comme
Felgy(XXY) = F” =F,
on applique alors le Théoreme 2.1 a F* pour conclure. O

Théoreme 2.2°. Soient X un ev.t.H.lc, Y un evitlc, F : X X Y — R une fonction
convexe s.c.i et propre et W = vectyx- x)(Pry-(dom(F™))) I’espace vectoriel engendré par
Pry-(dom(F™)) dans X* relativement a la topologie de Mackey. Supposons que la condition
suivante soit vérifiée :

dre R : inty(Pry-(F* < 1)) #0. (2.14)

Alors, soit
m%(x{(x*, x)— F(x,0y)} = inlg F*'(x",y") e R, Vx* € inty(Pry-(dom(F™))),
XE y*eyr*

soit

—F(x,0y) = inlg F*(x*,y") = —oo, Vx* € inty(Pry-(dom(F™))) et Vx € X.
v

Preuve.
Il suffit d’utiliser I’hypothese (2.14) et appliquer le Lemme 2.7 a la fonction convexe h*
définie par h(x*) = m}t; F*(x*,y"). O

Théoreme 2.3°. Soient X un e.v.t.H.l.c, Y un espace de Banach réflexif F : X x Y — R

une fonction convexe s.c.i et propre et By la boule unité fermée de Y*. Supposons que :
At eR,r>0 : intyxx(Pry([F* <] N (X" X rBy-))) # 0. (2.15)

Alors, pour chaque y € Y,

soit

max{(x’, x) - F(x,y)} = If {F"(C )0 =L €R, VAT € ity (Pry- (dom(F™))),
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soit

—F(x,y) = yirelﬁ*{F (YD) =N = oo, VT € intyye x)(Prye (dom(F7))) ef Vx € X.

Preuve.
Comme Y est de Banach reflexif alors on peut identifier ¥ a son bidual et comme F est
convexe s.c.i et propre, alors F = F** et on applique le Théoreme 2.3 a la fonction F*

pour conclure. O

Théoreme 2.4°. Soient X un e.v.t.H.l.c, Y un espace de Banach réflexif, F : X x Y — R
une fonction convexe s.c.i et propre, By- la boule unité fermée de Y* et W = vect,x- x)(Prx-(dom(F™)))

I’espace vectoriel engendré par Pry-(dom(F™)). Supposons que :
At eR,r>0 : inty(Pry-([F* < t] N (X" X rBy+))) # 0. (2.16)

Alors, pour chaque y € Y,

soit

max{(x”, x) = F(x, )} = }2};“7 Y)W ER, Vx" € inty(Pry-(dom(F™))),
soit

—F(x,y) = yirg*{F*(x*,y*) —(y*, )} = —oo, Vx* € inty(Pry-(dom(F™))) et Vx € X.

Preuve.

On applique le Lemme 2.7 a la fonction h, définie par
hy(x") = inf {F7(x",y") = {y, y)}
)7*6)/*
et on obtient le résultat. O

Théoreme 2.5°. Soient X et Y deux e.v.t.l.c et F : X X Y —> R une fonction convexe s.c.i
et propre. Supposons que Ox- € Pry-(dom(F™)). Alors pour tout sous-ensemble non vide B

de Y les assertions suivantes sont équivalentes :

(i) —oo < sup{(y",y) — F*(Ox-,y")} = mi)p F(x,y) < 400, Vye€B,
y*EY* X€E

(ii) Prysr(epiF) est fermé par rapport a I’ensemble B X R.

Preuve.

Pour la preuve, on applique le Théoreme 2.5 a la fonction F™* en lieu et place de F. O
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Théoréeme 2.6°. Soient X et Y deux ev.t.H.l.c et F : X x Y —> R une fonction convexe

s.c.i et propre. Supposons que

F (., y,) est ©(X*, X) — quasi-continue
IyyeY : (2.17)

(R, Prx-(dom(F *)))UJ est un sous-espace vectoriel.

Alors, pour touty € Y, ona:

—oo < sup{(y",y) — F*(Ox-,y")} = min F(x,y) < +oo.
y* cy* xeX

Preuve.

Pour la preuve, on applique le Théoreme 2.6 a la fonction F™* en lieu et place de F. O

Remarque 2.4. (2.17)— dy; € Y" : (F*(.,y;))" est w-inf-localement compact.

Théoréme 2.7°. Soient X, Y deux espaces de Banach réflexifs et F : XxY —s R une fonc-
tion convexe s.c.i et propre. Supposons que R, Pry-(dom(F™)) est un sous-espace vectoriel
w*-fermé. Alors, pour touty € Y, ona:
—0o < sup{(y",y) = F"(Ox-,y")} = min F(x, y) < +oo.
yrey* xeX

Preuve.

Notons qu’on identifie X et Y a leur bidual et que la fonction F* vérifie les hypotheses
du Théoreme 2.7. On applique alors le Théoreme 2.7 a F* en lieu et place de F pour

conclure. O

2.3 Dualité pour la minimisation du maximum de deux
fonctions convexes

Le probleme de minimisation du maximum de deux fonctions apparait dans plusieurs
domaines d’applications, parmi lesquelles on peut citer 1’algebre des ensembles flous,
la minimisation du cofit de production, la maximisation d’une fonction d’utilité, etc. La
stabilité de ce probleme apparait dans [64] et [65]. Dans cette section nous étendons cette
propriété de stabilité.

Soient X un espace vectoriel topologique, f et g : X — R deux fonctions convexes
propres. Pour un besoin de clarté on note par la suite ¥ = X. La fonction objectif du
probléme (P,) est F : X X Y — R définie par

F(x,y) = max(f(x+y),g(x), Y(x,y)€XXY.
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Ainsi on se ramene a 1’étude du probleme paramétrique suivant :
minimiser max(f(x + y), g(x)), slec xeX

Propriété 2.2. La fonction F vérifie les propriétés suivantes :
(i) la fonction F est convexe,

(ii) pourtoutt € R, ona
Pry((F <) =[f<1r-[g=1],
(iii) on a l’égalité suivante :
Pry(dom(F)) = dom(f) — dom(g),
(iv) on a l’équivalence suivante :
y € dom(f) — dom(g) < inf (Py) < +oo.

Preuve.

(i) F est convexe en tant que maximum de deux fonctions convexes.

(i)
vyePry([F<t]) &= dxe X: F(x,y) <t

fx+y) <t

— dxeX:
gx) <t
x+yelf<t]

— dxeX:
xelg <]

—yel[f<t]-[g<t]
(iii)

y € Pry(dom(F)) &= dx e X : F(x+y) < 400

f(x+y) < +o0
— dxeX:
g(x) < +o0

& y € dom(f) — dom(g).
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(iv) y € dom(f) —dom(g) & dx € X : F(x,y) < +o0 & inf (P,) < +oo0.

O
Notons A, le simplexe de R? défini par
Ay ={(A4,pu) €R*|A1>0, u>0etd+pu=1}
Pour tout a, b € R, on vérifie sans peine que :
max(a,b) = max {da + ub}. (2.21)

(e

On déduit de (2.21) une expression simplifiée de la conjuguée de F, qui nous permettra

d’écrire le dual perturbationnel de (P,).
Propriété 2.3. Pour tout x* € X*, y* € Y*,ona:
F'(x",y") = min {(1f)"(y") + (ug)"(x" — y")} (2.22)
(AN,

Preuve.

Pour tout (x*,y*) € X* X Y*,ona:

—F*(x*,y") = inf {max{f(x+y),g(x)}—(x",x) — ", »}

(x,y)EXXY

= inf {max{f(z),g(x)} —(x", x) = ",z — x)}
(x,2)EXXY

= inf max , — (XX - Oz —
(x,z)edom(f)xdom(g){ {f(Z) g(x)} (X x> <y z x>}

= inf max {4 +ug(x)} = (x*, x) =y, 72— x
L {MGAZ{ F@) + ug(0)} = (¥, %) = (4, 2 >}

= inf max {Af(z) — V", z) + ug(x) — (x* —y*, x)} 7.
(x2)edom(/)xdom(g) {(/LH)EAZ{ J@) =20+ pg(x) = (x" =y >}}

Soit la fonction ¢ : dom(f) X dom(g) — R définie par

’70((/17/J)7 (X, Z)) = /lf(Z) - <y*7 Z) + /Jg(X) - <-X* - y*5 X).

Pour tout (x, z) € dom(f) x dom(g), ¢(., (x,z)) est concave et s.c.s car affine.

Pour tout (4, u) € Az, ¢((4, u), .) est convexe en tant que somme de fonctions convexes.
Comme le simplexe A, est un compact de R?, le Théoréme MiniMax de Maurice Sion
[60, Théoréme 4.2°] donne :

—F*(x*,y") = max inf Af(2) = &, 2) + ug(x) —(x* —y*, x)} ¢
(x%,y7) (max. {(x’z)edom( i dom(g){ J@) =% +uglx) —(x" =y >}}
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Ainsi,

F*(x*,y") = min { sup {02 = Af(@) + (X" =y, x) —ﬂg(x)}}

(Aehr | (x,z)edom(f)xdom(g)
= min {(4/)"(") + (ug)"(x" -y}
(LpeEA,
O
Le probleme dual associ€ au probleme (Py) peut donc s’€crire comme suit :
Maximiser {y*,y) — (/lrle)ie% {(AN)* ") + (ug)* (—=y")}, slc y eY™. (Dy)
3 2
Théoreme 2.8. Supposons que :
dteR :int([f <t]-[g<t]) #0. (2.23)

Alors, soit

Iygleay)g{@*, - u%ie% 2{(/U‘)*(\/"‘) + () (=yHh = inf max(f(x +), (),
Vy € int(dom(f) — dom(g)),

soit
—00 = in§ max(f(x +y),g(x)) = = min {(1/)"(y") + (ug)" (=y")},
XE (AN
Yy € int(dom(f) — dom(g)) et Vy* € Y".
Preuve.

D’apres la Propriété 2.2, (ii) Pry([F < t]) = [f < t] — [g < t] et donc la condition (2.23)
est équivalente a la condition (2.4). La convexité de F' permet de conclure a 1’aide du

Théoreme 2.1. O

Considérons X Hausdorff, alors on obtient la version duale du Théoreme 2.8.

Théoréme 2.8’. Soient X un ev.t.Hlc, f et g : X — R deux fonctions convexes s.c.i

et propres telles que dom(f) N dom(g) # 0. Supposons que

IeR : intT(X*,,Q[ L) aary snl+lwe < tz])) 0. (2.24)

(ALWEA 1+ =t
Alors, on a:

soit

max((x*, x) ~ max(f(x). g()) = inf min {(1/)°0") + (ug)"(x" =),

v eintT(X*7x)[ U dom«ﬂf)*)+dom(<yg>*)],

(A)ery
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Soit
—max(f(x),g(x)) = inf min {(1f)"(y") + (ug)*(x" — y")} = —oo,
yEX* (ALu)eN,
VX € ity x) U dom((Af)*) + dom((ug)*) | et Vx € X.
(LEN,
Preuve.

- Montrons que

Pro((F <th= [ J (5 <a]+[@e) <nb.

(Lp)ers i +tr=t

On a,
X €Pry([F"<tf]) = e Y : F'(x',y) <t
= Iy eY' : min {(A) )+ ) (X —y)} <t
(Lp)ehs
S I eV, A €Ny (AN )+ (ug)'(x" —y) <t

h+h=t

= W eV, AL e, L eR QAN G) <

gy (x* =y) <t
Hh+th=t

— A, p) e Ay, At R
x e [(Af) Sl +[(qEg) <l

= x* ¢ U (A <]+ [(ug)” < 1))

(/L,u)EAz,tl +th=t
- Montrons que

Pry.(dom(F")) = U (dom((1/)") + dom((ug)")).

(A)ehs

On a,
x" € Pry:(dom(F7)) &= Ay" € V" : F'(x",y") < +o0
S eV Ihwe: AHG)+ W (X —y) <+
— Iy eV, A e Ay: ¥y edom((Af)") et x"—y* € dom((ug)”)
— x* € dom((1f)*) + dom((ug)").
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Puisque dom(f) N dom(g) # @, on conclut a I’aide du Théoreme 2.1°. |

Remarque 2.5. La condition (2.24) est vérifiée dans le cas particulier ou une des fonctions

f*ou g" ests.c.s en un certain point de X*.

Théoreme 2.9. Supposons que X est un e.v.t.l.c. Si f et g sont deux fonctions convexes s.c.i

propres telles que dom(f) Ndom(g) # 0 alors les assertions suivantes sont équivalentes :

(i) =00 < sup{(x”, x)—max(f(x), g(x))} = Mrfll)ieliz{(ﬂf)*(XT)+(ﬁlg)*(X§) DX+, = X< too,

xeX
Yx* e X*.
(ii) L’ensemble U (epi(Af)" + epi(ug)*) est w*-fermé.
(Apu)ehs
Preuve.

Montrons que

Prox(epiF?) = | | (epi(Af)” +epi(ug)’).

(A€,

Notons que la fonction F : X X ¥ —> R est définie par

F(x,y) = max(f(x +y),8(x), V(xy)eXxY

et que sa transformée de Fenchel F™ est définie par

F'(x",y") = u‘%ieriz{(’lf)*(y*) +(ug) (X =yH), V(xLyH)eX xY.

(x*,r) € Pryng(epiF") & Iy € X" : F*'(x",y")<r
S eXL Il eh: AN)O)+ W (X —y)<r

rn+r=r

= W eX, AL e, Ar, e R AN G <1

Mgy (x" =y) <r

r+rn=r

= Wy e X, A p) € Ay, A1, e RO, 1) € epi(Af)*

(X" =", r2) € epi(ug)”
&= A p) € Ay : {(x, 1) € epi(Af)" + epi(ug)’
— (x',r) € U (epi(Af)" + epi(ug)®).

(Ap)ed,

On conclut a I’aide du Théoreme 2.5 appliqué a la fonction F. O
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Dans le but de donner la version duale du Théoréme 2.9, rappelons la définition de la

somme inverse de deux sous-ensembles de X X R.

Définition 2.5. Soient deux sous-ensembles M et N de X X R, la somme inverse de M et

N est le sous-ensemble de X X R noté et défini par
MLN={x+y,r)e XXR|(x,r)e Met(y,r) € N}.

Théoreme 2.9°. Soient X un e.v.tHlc, f et g : X — R deux fonctions convexes s.c.i

propres telles que
0x-€ | @om((af)") +dom((ug)").

(AeN

Alors pour tout sous-ensemble non vide B de X, les assertions suivantes sont équivalentes :

(i) —e0 < sup {<y*,y> ~ min (/)07 + (ﬂg)*(—y*)}} = min max(f(x +3), g(x)) < +eo,

Vy € B.

(i1) epif L epig est fermé par rapport a B X R,
oug: X — R est la fonction définie par g(x) = g(—x), Vxe X.

Preuve.

En considérant la fonction F définie par F(x,y) = max(f(x +y), g(x)), on a

Ox € | ] (dom((1f)")+dom((ug)")

()€

équivaut a
Oy € PrX*dom(F*).

De plus,

Pry,r(epiF) ={(y,r) e Y XR : Axe X, f(x+y) <retgx) <r}
={y,)eYXR|Ax=—v, u=x+y, fw)<r, g(=v)<retu+v=y}
=epif L epig.

On applique le Théoreme 2.5’ pour obtenir le résultat cherché. O

Nous étudions maintenant le probleme de minimisation du maximum de deux fonctions

convexes dans le cas d’espace vectoriel normé.

Théoreme 2.10. Soient X un evn, f et g : X = Y — R deux fonctions convexes.
Supposons que
Ar>0,teR:int([f <t]-[g <t]NrBy) # 0. (2.25)
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Pour tout x* € X*, on a soit

max  {(y",y) = (Af)'O) — (ug)' (x" —y")} = infmax(f(x +y), §(x)) - (x*,x)} €R,

(Ap)ehy,y eX*

Yy € int(dom(f) — dom(g)),

soit
- (Agll)ieriz{(ﬂf)*(y*) + (ug)"(x" =y} = infmax(f(x + y), () = (¥, 1)} = —oo,
Vy € int(dom(f) — dom(g)) et Vy* € X*.

Preuve.

11 suffit de montrer que

Pry([F <t] x (rBx X X)) = [f <t] - [g < t] N rBy.
En effet,
fx+y) <t
yEPry([F <t] X (rBxx X)) &= dxe X :1g(x) <t

llxl < 7

x+yel[f<t]
— dxeX:

x€[g<tINrBy
= yel[f<t]-[g<t]nNrBy.

Par suite, on a bien
Pry([F <t] X rBx X X)) = [f < t] — [g < ] N rBy.
On déduit le résultat en utilisant le Théoreme 2.3. O

Remarque 2.6. D. Azé [2] a obtenu une expression plus simple de la conjuguée de

Legendre-Fenchel de la somme de deux fonctions convexes grace a la condition
A >0,teR:int([f<t]NFBx—-[g<tINnrBy)#0
qui est en faite équivalente a la condition

r>0,teR:int((f <] - [g < £] N rBy) # 0.
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Théoreme 2.11. Soit X un espace de Banach, f et g © X — R deux fonctions convexes
s.c.i propres telles que R, (dom(f) — dom(g)) soit un sous-espace fermé. Alors pour tout

x*e X', ona

—0o < sup{(x”, x) — max(f(x),g(x)} min _ {(4f)"(x) + (ug) (1)} < +oo.

xeX (ﬂ,y)EAz,x’ﬁx;:

Preuve.

On procede de maniere analogue qu’au niveau de la preuve du Théoreme 2.7 en prenant
F(x,y) = max(f(x), g(x)). 0

Remarque 2.7. Si on prend x* = Ox- et on suppose que dom(f) N dom(g) # 0 dans le

Théoreme 2.11, on obtient un résultat de Traoré-Volle [65, Théoréeme 7.1].

Si X est réflexif on obtient la version duale du Théoreme 2.11.

Théoreme 2.11° Soient X un espace de Banach réflexif. f et g © X — R deux fonc-

tions convexes s.c.i propres telles que
R | ) (dom((2f)") + dom((ug)))
(A,

est un sous-espace vectoriel w*-fermé. Alors, pour tout y € X, on a

—00 < sup {<y*,y> — min {(1f)'(°) + (ﬂg)*(—y*)}} = ‘}li;? max(f(x +y),g(x)) < +oo.

yex* (Ap)eh,

Preuve.

On applique le Théoreme 2.7° a la fonction F™* définie par

F*(x*,y") = min {(Af)' (/") + ()" (x" = y")}. O
(et

Pour terminer ce chapitre nous donnons un exemple qui motive le fait de considérer le

probleme de minimisation du maximum de deux fonctions convexes.

Exemple 2.1. Comme exemple de probleme de minimisation du maximum de deux fonc-
tions nous pouvons citer la somme en niveaux de deux fonction notée A et définie par :
Etant donné deux fonctions f et g a valeurs réelles définies sur un R-espace vectoriel X,

on appelle somme en niveaux de f et g la fonction fAg : X — R définie par

[fagl(x) = ivlel}g{f(x -V Vgl YxeX
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Pourtoutye Y = X,on a

[faglly) = g{ﬂy —x) V g(x)}
=inf{f(x+y) v g(0h

ou g(x) = g(—x).
Il apparait donc que la somme en niveaux est la fonction valeur de la minimisation du
maximum des deux fonctions f et g. La somme en niveaux a plusieurs applications ([56]),

parmi lesquelles on peut citer :

- la fonction distance
Soit un e.v.n (X, ||.||), la distance d’un point y € X a un sous-ensemble non vide
C c X estla fonction d¢ : X — R U {+0co} définie par :

de(y) = inf lly = .

La fonction distance d¢ est un cas particulier de la somme en niveaux. En effet,
dc(y) = [llll aicl(y), YyeX.

- minimisation d’un coiit de production
Considérons deux usines joyant leurs efforts pour produire un vecteur x € R’ de
biens. Si la premiere usine produit x; € R, on note C;(x;) son colt. De méme,
C»(x,) représente le colit de production de x, € R’} pour la seconde usine.
On cherche une stratégie optimale de production pour les deux usines. Une solution
consiste a trouver x;,x, € R7 : x; + x, = x et qui minimise sur R’} la fonction
(x1, x2) F= C1(x1) V Ca(x2).

Minimiser Cy(x;) V Ca(xp) s.l.c x1+x, =x, x1,x € R]. (2.26)

Moyennant une modification mineure, ceci correspond a un probleme de somme en
niveaux. En effet, la valeur optimale du probleme (2.26) est précis€ément [C,AC,](x),

N

ou

Ci(x,‘) si x; € Rﬁ
Ci(x;) = pour i=1,2. (2.27)

+00 sinon.
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CHAPITRE 3

Dualité robuste pour des problémes d’optimisation
convexe conique a données incertaines

3.1 Introduction
Considérons le probleme d’optimisation convexe conique incertain suivant :

inf f(x) slc gu(x) €S, (P)

u appartient a U, un ensemble incertain,

X et Y sont deux espaces vectoriels topologiques Hausdorff localement convexe,

f+ X — R U {+0o} est une fonction convexe semi-continue inférieurement propre,

S C Y est un cone convexe fermé non vide,

pour chaque u € U, la fonction g, : dom(g,) C X — Y est soit S -convexe fermée

par épigraphique ou soit S -convexe fermée par niveaux.

On associe au probleme incertain (P) sa contrepartie robuste ([8], [9], [11]) définie par :
inf f(x) slc gux)e-S, Yuel. (RP)

La valeur de la contrepartie robuste inf (RP) est appelée valeur robuste du probleme in-
certain (P).

Etant donné u € U, une instance du probléme (P) est donnée par :

inf f(x) slc g.(x)€-S. (P.)
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On introduit le probléme qui consiste a maximiser sur U la fonction qui a u € U associe
la valeur de (P,) :

supinf{f(x) : gx)e-S} slc wuel. Q)

La valeur de (Q), sup (Q) est appelée la pire valeur du probleme (P).

On observe que la pire valeur est une minorante de la valeur robuste et que 1’inégalité
entre ces deux valeurs peut €tre stricte.

L’objectif de ce chapitre est de donner une condition nécessaire et suffisante permettant
d’obtenir 1’égalité entre la valeur robuste et la pire valeur, avec exactitude de la pire valeur.
On déduit de cette propriété une condition suffisante permettant d’obtenir la propriété de
dualité forte robuste et on compare ce dernier résultat a celui de Jeyakumar, Li et Lee.
En établissant 1’égalité entre la valeur robuste et la pire valeur, nous établissons la dualité
forte robuste du probleme (P) ([6]).

3.2 Valeur robuste et pire valeur

Pour chaque u € U, notons F, I’ensemble admissible du probleme (P,) c’est-a-dire :
F, ={x e dom(g,) : gu(x) € =S}
Nous notons aussi
F={xeX:xedom(g), gux)e-S, YuelU}= ﬂ F.,

uelU

I’ensemble admissible de la contrepartie robuste (RP).

Considérons la fonction p : X — R U {400} définie par :

p =sup(f +ir,).
uelU

Propriété 3.1. La fonction p vérifie :
(i) p=f+ir,
(ii) dom(p) = F N dom(f),
(iii) inf p = inf (RP).
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Preuve.
Ona:

(i) Pour tout x € X,

p(x) =sup(f + ir,)(x)

uelU

=f(x) + supir,(x)

uelU

f(x) si xekF, YuelU

+00 sinon

f(x) s1xeﬂF,,:F
_ uelU

+00 sinon.

On conclut que p = f + ip.
(i) Ona:
dom(p) ={x € X : f(x)+ir(x) < +oo} = F N dom(f).

(iii) Par définition du probleme (RP)

inf (RP) :ilel)f{f(x) D gu(x) e =S, YueU}
:ilel}lg{f(x) : XEF}

=inf{f(x) + ir(x)}
xeX
- o)
m]
Proposition 3.1. On a toujours l’'inégalité :
sup (Q) < inf (RP). (3.1)
Preuve.
En effet, on a :
sup (Q) = supinf (P,) = supinf(f + ir, )(x) < inf sup(f + ir,)(x) = inf(RP). O
uelU uely XX xeX ey

Nous donnons un exemple de probleme qui prouve que 1’inégalité (3.1) peut Etre stricte.

Exemple 3.1. Considérons le probleme d’optimisation convexe conique incertain sui-
vant :

minimiser (x; + x,) s.d.c [(2 - ul)x? +(1+ uz)xg] <1, (P)

| =
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avec (uy,up) = (1,2) ou (uy,up) = (%, 1). Dans cet exemple,

XZRZ, f(x17x2):x1+x27 YZR, S :R+a

1 1
U= {(1,2),(5, 1)}, gulx1, %) = 3 | = uxt + (1 +u)xd| - 1.

Soit u = (uy,u,) € U, étudions le probleme
1
min (x; + xp) s.d.c gu(x,x) = 5[(2 - ul)x% +(1+ uz)xg] -1<0. (P,)

- La fonction f est linéaire donc convexe.

- La hessienne de la fonction g, est

2 _ 2—u1 O
Vgu(x)—( O 1+u2 ’

et est définie positive car ses valeurs propres sont strictement positives ; par conséquent

la fonction g, est convexe.

On déduit que les conditions nécessaires de minimalité de Karush-Kuhn-Tucker (KKT)
deviennent suffisantes.

Par ailleurs g,(0,0) = —1 < 0, donc la condition de qualification de Slater est vérifiée.
Ainsi (X1, x,) est une solution optimale du probleme (P,) si et seulement si

(x1, x,) vérifie le systeme de KKT suivant : il existe 4 € R tel que

Vf(xi, %)+ AVgu(x1,x) =0
Ag,(x1,x%) =0

8u(X1,%) <0

1>0

ce qui est équivalent a
1+ /1(2 - M])%] =0

1+ A1 +uy)x, =0

Agu(x1,%2) =0

gu(X1,X2) <0

A>0,
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car Vf(x1, x) + AVg,(x1,x2) = 0 ce qui implique que 4 # 0.

Par suite,
. -1
R T B
_ -1
Xg = —————
2720 + uy)
et
(x1,x2) 1(2 ) : + (1 +uy) : 1=0
(X1, X%) = | -u) 5 u)———|—-1=0.
Euld, 22} =3 V22— R+ wy)?

On en déduit que

1 1 1
A= 1l= + .
2\2—u;  1+u

Ainsi,
min (P,) =f(x1,x,)
:)_Cl + }2
1 1
=— .2 + :
J (2 — U 1+ l/tz)
D’ou

—\/g stu=(1,2)

1
N iu=(=1).
Siu (2 )

Par conséquent,

max(Q) = max min(P,) = — ;

D’autre part, la contrepartie robuste du probleme (P) est donnée par :

x% + 3x§ <2
min (x; + x,) s.Lc (RP)
3x3+4x3 < 4

Notons g1(x1, x2) = x2 + 3x3 — 2 et g2(x1, X2) = 3x7 + 4x3 — 4.
21(0,0) = -2 < 0 et g,(0,0) = —4 < 0; la condition de Slater est donc vérifiée.
(x1, x2) est une solution optimale du probleme (RP) si et seulement si (x;, x,) vérifie le

systeme de KKT suivant :
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il existe Ay, A, € R tels que

Vf(x1, x2) + 41Vgi(x1, x2) + 12Vga(x1, x2) =0
4181(x1,x2) =0

A282(X1, %) =0

81(x1,x2) <0

&2(x1,x2) <0

A1 2>20,4, >0.

Il en résulte que

1+24;x; +6,x;, =0
1+641% +84x, =0

A1g1(x1,x) =0

A282(x1,x2) =0

A > 0, A > 0,
car si 4; = 0, alors 4, # 0 et g,(x;,x;) = 0 et par un calcul explicite x; = —%,
Xy = —‘/Tﬁ et g1(x1,x) = 2—11 > 0, ce qui est absurde ; donc nécessairement A; # 0. De

méme, on vérifie que A, # 0.

On en déduit alors que

_ -1
1T 160
_ -1
Ap= —————
>7 61, + 84,
g1(x1,x) =0
g2(x1,x2) = 0.
Tout calcul fait, on trouve
_ 2 ) _ 2
X = ——— e Xo = —4f—=.
& 5

On a donc

2+ 2
7

min (RP) = —2 t/g\/i > — \/g = max(Q).

min (RP) = f(x1,X2) = =

Par conséquent,
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Considérons I’opposé du probleme (Q), c’est-a-dire
infsup{—f(x) : g.(x)e-=S} slc uel. -0

La perturbation de la fonction objectif de (—Q) par I’addition d’une forme linéaire conti-

nue nous amene a considérer une fonction g : X* — R définie par :

g(x) = inf sup{(x', x) = ()} = inf(/ + ip,)' ('),

xEF
D’apres la Propriété 1.11,
q" =sup(f +ip)"

uelU
et comme
sup(f +ip,)" <sup(f +ip) =p
uelU uelU
alors
q <p.
Par conséquent,

Rappelons que I'y(X) est ’ensemble des fonctions f : X —> R convexes s.c.i propres.

Lemme 3.1 ([15]). Soient (h;)ic; C To(X), ou I est un ensemble quelconque d’indices.

Supposons qu’il existe x € X tel que sup h;(xX) < +o0. Alors
i€l

epi|suph;| =co epih; |.
i) <[ e
Considérons la condition suivante :
S eTX)
() Fndom(f)+#0

gu estS-convexe fermée par niveaux, Yu € U.
Lemme 3.2. Supposons que (F€) est vérifiée. Alors,
epip’ = @[U epi(f + ipu)*J :
uelU

Preuve.

Si () est vérifiée alors f + ip, € I'o(X) pour tout u € U et on a

q" = sup(f +ip,)" = sup(f +ir,) = p
uelU uelU
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Par suite, dom(g*) = F N domf # 0 et donc il existe x € F N dom(f) tel que

q (x) = sug(f +ip )(x) < +00.

En appliquant le Lemme 3.1 a la fonction ¢* = p, on obtient le résultat cherché. O

Définition 3.1. Etant donné deux sous-ensembles A et B d’un espace vectoriel topolo-

gique, on dit que A est convexe fermé par rapport a B si
co(A)NB=ANB.

Théoreme 3.1. Supposons que () est vérifice. Alors, pour chaque x* € X*, les asser-

tions suivantes sont équivalentes :

(i) p*(x) = minsup((x’, x) - f(x))

xeF,

(ii) U epi(f + ir,)" est convexe w*-fermé par rapport a {x*} X R.
uelU

Preuve.
Soit x* € X*, on a

p (x7) = sup{(x”, x) — sup(f + i, )(X)}.

xeX uelU
Il en résulte que

pr(x") = (x", x) —sup(f + ip,)(x), VxelX,
uelU

d’ou
Pz x) = (f+ip)x), VYxeX.
Comme dom(f) N F # @ alors p*(x*) > —oo. On peut donc distinguer deux cas :
1°" cas : p*(x*) = +o00; dans ce cas, montrons que (i) et (ii) sont toutes vraies et donc
équivalentes.

Comme p* < g alors

g(x") = +00 = (f +ip,)" (x") = +00, Yu e U.

P'(x) = g(x*) = min supl(x', ¥) - f())

xeF,
Ainsi (i) est vraie.

D’apres le Lemme 3.2, on a

epip’ ﬂ ((x'} xR) = E[U epi(f + iFu)*] ﬂ ((x'}xR) =0,

uclU

68



3.2. VALEUR ROBUSTE ET PIRE VALEUR

car p*(x*) = +oo,
Par conséquent
[U epi(f + ipu)*] (Y xR) = m[U epi(f + iFu)*) () () xR) = 0.
uelU uelU
d’ou (i) est vérifiée.
2¢cas: p*(x") e R.
Montrons que (ii) = (7).

En effet, on a :
(', p'(x") € epip” (] (1x'} x R) = %(L[J] epi(f + ipu)*] () (1xy xR).
Comme (ii) est vérifiée, alors “
(", pr(x) € [uj epi(f + iFL,>*J () (1xy xR).

Il existe donc u € U tel que
(x*, p"(x") € epi(f + ir,)",

ce qui implique que
(f +ir)"(x") < p*(x).

Par définition de ¢, on a
g = Inf(f +ir,)"(¥) < (f i)' (¥) < p'(x")
et comme p* < g, on en déduit que

p(x") = minsup{(x", x) - f(x)}, d’ou (7).

xeF,

Montrons que (i) = (ii).
Soit
(x*,r) € a{U epi(f + ipu)*] N (1x'} xR).
uelU

D’apres le Lemme 3.2, p*(x*) < r et comme (i) est vérifiée alors il existe u € U tel que
P =(f+ip)(x)<r

ce qui signifie que

(x",r) € epi(f + ir.)".
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D’ou,

', r) e | Jepi(f +ir)".

uclU

Il en résulte que
E[U epi(f + iFu)*] N({x"} xR) C U epi(f +ip,)" N ({x*} X R);
uelU uelU
par conséquent,

E(U epi(f + iFM)*J N (') xR) = |_Jepi(f +ir) N ('} xR), dob (ii).

uelU uelU

O

Corollaire 3.1. Supposons que () est vérifiée. Alors les assertions suivantes sont équivalentes :

(i) —o0 < me;fx inf (P,) = inf (RP) < +o0,

ue
(ii) U epi(f + ip,)" est convexe w*-fermé par rapport a {Ox-} X R.
uelU
Preuve.
Ona
P (0x-) =sup{—=(f + ir)(x)}

xeX

= —inf{(f +ir)(x)}.

Par conséquent ; p*(0Ox-) = —inf (RP), autrement dit —p*(Ox-) = inf (RP).

En prenant x* = Ox- dans le Théoreme 3.1, la condition (i) devient

P (0x:) = min sup{—f(x)}

xeF,
= min sup{—f(x) — ir, (x)}
uelU xeX

= —max irel)lj{f(x) + i, (x)}

= —max inf (P,).
uelU

Autrement dit

—p*(Ox+) = maxinf (P,).
uelU

Comme dom(p) # 0 alors pour tout x* € X",
—00 < p*(x7) < +o0,

donc

—00 < —p*(x") < +o0.
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Ainsi, en utilisant 1’égalité —p*(0x-) = inf (RP) on a

—00 < mabx inf (P,) = inf (RP) < +o0.
ue

Quant a I’assertion (if) du Théoreme 3.1, elle devient ”U epi(f + ir,)" est convexe

uelU
w*-fermé par rapport a {Ox-} X R”.

Par suite, on obtient I’équivalence entre (i) et (if). O

Corollaire 3.2. Supposons que (7€) est vérifice. Alors, les assertions suivantes sont

équivalentes :
(i) p*(x*) = minsup{(x*, x) — f(x)}, Vx" € X",
uelU xeF,
(ii) U epi(f + ir,)" est convexe w*-fermé.
uelU
Preuve.

Observons que pour tout sous-ensemble A C X* X R, on a:
A est convexe fermé dans X* X R si et seulement si A convexe fermé par rapport a
{x*} X R, pour tout x* € X*.

En effet, si A est convexe fermé dans X* X R, alors pour tout x* € X*, on a :
co(A)N({x"} xR)=AN{x"} xR).
Inversement, si A est convexe fermé par rapport a {x*} X R pour tout x* € X*, alorson a :

T(A) = T3(A) N (X X R)
=z n (| axyxmr)

xreX*

| @@ n(x) x R)

x*eX*
U AN ({x*} xR)
x*eX*

=ANX"xXR)=A.

Avec cette précédente observation, (i) est équivalente a (ii) d’apres le Théoreme 3.1. O

On note par
ST={1eY" : (4,y) =0, Vye S},

le cone polaire positif de S .

Etant donné une fonction g:dom(g)c X — Yetde ST, onnote 1g : X — R U {+o0}
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la fonction définie par

(4,8(x)) sixedom(g)
Ag(x) =
+00 sinon.

Nous considérons la tranche de niveau y = Oy de g que I’on note :
g7'(=8) = {x € dom(g) : g(x) € =S}

et ’ensemble

Ko = | epicag.
AeS+
qui peut etre vu comme le cone caractéristique associé au systeme d’inégalités ([33])

{x e dom(g) : Ag(x) <0, YAe S}

Nous allons montrer sans aucune hypothese de convexité sur g que I’ensemble K, est un

cOne convexe.

Propriété 3.2. Pour toute fonction g : dom(g) C X — Y tel que g7'(=S) # 0, ona :
(i) ig1(_s) = sup(4g),
AeSt
(i) K, est un cone convexe.

Preuve.
Montrons d’abord (7).
Notons que
0 si xe g l(=9)
lg-1(—5)(X) =
+00  sinon,
et distinguons deux cas.
- 1 cas :si x ¢ g7!(=S) c’est-a-dire lg-1(—5)(X) = +oo, alors g(x) ¢ —S. d’apres le
théoreme de séparation de Hahn-Banach appliqué a {g(x)} et —S, il existe

(", r) € Y" xR tel que
O,y <r<(gx),y), Vye-=S.
Si on prend y = Oy, il vient alors que r > 0 et donc y* € S *. Par suite,
sup(Ag)(x) > (g(x),ny") >0, VYn>1.

AeS+

En faisant tendre »n vers +oco on obtient

sup(Ag)(x) = +oo.
AeS+
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- 2% cas :six € g7(=S) Cest-a-dire iy-1_g)(x) = 0 alors

g(x) € =S autrement dit —g(x) € S. Ainsi, pour tout 1 € S*,

(4,-g(x) =20,

c’est-a-dire
(1,8(x) <0

et donc
sup(4g)(x) = 0,

AeS+
car Oy- € Y™.
Vérifions maintenant (if).
Montrons que K, est un cone. Soit (x*,r) € K, ett > 0. Il existe 1 € S* tel que
(1g)*(x*) < retde plus,ona
(14g)*(1x") = sup{(ex”, x) — 1Ag(x)}

xeX

= tsup{{x", x) — Ag(x)}

xeX
= 1(18)"(x").

Par conséquent, (14g)"(tx*) = t(Ag)"(x") < tr. Il vient que #(x*,7) € K, car t1 € S§™ et par
suite, K, est un cone.

Montrons que K, est convexe. Pour cela, il suffit de montrer qu’il est stable par I’addition.

Soient (x7, 1), (x5, 72) € K, il existe donc A;, 4, € S tels que

(x1,71) € epi(A;8) et (x5, 12) € epi(dr8),
c’est-a-dire
(119)"(x]) < 1y et (:9)"(x3) < 1.

Pour tout x € X, on a

(x] + 25, x) = (4 + )g(x) = (x7, x) — 118(x) + (x5, x) — Arg(x)
< (419)" (X)) + (A28)"(x3)

<r +n.

Par conséquent,

sup{(x] + x5, X) — (A1 + A2)g(0)} < 11 + 1y,
xeX

d’ou
(A + 22)8)" (X} + Xx3) < 1y + 12,
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c’est-a-dire

()Cﬁl< + X;, r+ 7'2) € epl((/ll + /lz)g)*
Ainsi,
(x1, 1) + (x3,12) € K,

car (4; + A;) € S7; d’ou K, est convexe. O

Proposition 3.2. Pour toute fonction g : dom(g) ¢ X — Y, S-convexe par épigraphe

telle que g7'(=S) # 0, on a

epiO'g—l(_S) = Kg.

Preuve.

Soit la fonction H : X X Y — R U {+oc0} définie par

H(_X, )’) = is—epig(xa —)’)

= I5-epig © L(X, ),
ou L: X XY — X xYestl'application linéaire involutive continue définie par
L(x,y) = (x,=y), Y(x,y)€ XX Y.
Ona

H*(X*’y*) = Ssup {<(X*’ y*)a (X,y» - H(-x, )’)}

(x,y)eXxY

= sup {{(x", ), (x,¥)) — is-epig(x, =)}
(x,y)eXXY

= sup  {{(x",y"), ()}
(x,—y)eS-epig

= sup {{(x",y%), (x, )}
—y—g(x)eS

= sup {{(x", "), (x, =5 — g(x)))}
xeX,seS

= sup {{(x",x) + (", —s — g(x))}
xeX,seS

= sup {{x",x) =", 8) — O, g(x)}
x€X,s€S

= su};(){(x*, x) — £2£{<y*’ sy + 7, gt

09 (x) si y'eS*

+00 sinon.

Par ailleurs,
epiH = L(S-epig) X [0, +oo],
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donc H est convexe S.C.1.
De plus, dom(H) = L(S-epi g) et du fait que g~!(=S) # 0 alors il existe x € X tel que
—g(x) € S. On en déduit que (x,0y) € S-epi g et donc H est propre. Ainsi, H € ['((X X Y)

et on a, pour tout x € X,

H(x,0y) = H"(x,0y)

= sup {x%,x)+ (1, 0y)— H (X", )}
x*eX*,AeY*

sup  {{x7, x) = (4g)"(x")}

x*eX*, eSSt
sup { sup {{(x", x) — (ﬂg)*(X*)}}
AeS+ \xreX*

sup(4g)™ (x).
AeS+

Par définition de H, on a aussi

H(x,0y) = is.epig(x,0y) = ig-l(—S)(X);

ce qui implique que
ig—l(_s) = Sup(/lg)**
AeS+

Comme g~ '(=S) # 0 alors il existe x € X tel que

sup(1g)™(x) < +oo,
AeSt

et d’apres le Lemme 3.1, 0on a

epili1s))” = epi(sup(Ag))’ = %[U epi(ﬂg)***].

AeS* Aes+

Rappelons que 0p-1(_g) = i;_l sy alors il vient que
epiTgi-s) = a[U epi(/lg)***) = E(U epi(ﬂg)*) ;
AeST AeSt
d’ou,
epiTy1(_s) = (U epi(/lg)*) = fg,
AeS T
car K, est convexe d’apres de la Propriété 3.2-(ii). O

Rappelons un résultat sur I’épigraphe de la conjuguée de la somme de deux fonctions.
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Lemme 3.3. [17, Theorem 2.1] Pour toutes fonctions hy, h, € I'o(X) telles que
dom(h;) Ndom(h,y) # 0, on a

epi(hy + hy)" = (epih; + epih}).

Nous allons maintenant étudier le cas ou les fonctions g, sont S-convexes fermées par
épigraphe.
Renforgons la condition (.7) en considérant la condition suivante :
felX)
() Fndom(f)#0

gu estS-convexe fermée par epigraphe, Yu € U.
Proposition 3.3. Supposons que (") est vérifice. Alors, les assertions suivantes sont
équivalentes :
(i) inf (RP) = max (Q),

(ii) U (epif* + K,,) est convexe w*-fermé par rapport a {Ox-} X R.
uelU

Preuve.

Puisque F # 0,ona F, = g;'(=S) # 0, pour tout u € U. D’apres la Proposition 3.2, on a
epior, = epiiy, = K., YueU.

En utilisant le Lemme 3.3, on a pour tout u € U,

epi(f +ir,)" = (epif* + epii} )
= (epif* + epii}, )
= (epif” + Ky,)
= (epif* + K,,).

Par conséquent,

| Jepitf +ir) =] Cepif + Ke.

uelU uelU

On conclut en utilisant le Corollaire 3.1. O

3.3 Dualité forte robuste

Dans cette section, a ’aide du probleme (Q), nous établissons la dualité forte robuste du

probleéme incertain (P).
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Pour chaque u € U, on associe au probleme (P,) son dual lagrangien :
sup in)t;{f(x) + Ag.(x)} sle 1eS™. (D,)
A X€E
Le dual "optimiste” du probleme incertain (P) ([7], [16], [36], [43]) est défini par :

sup inf{ f(x) + Ag,(x)} sle (u,)eUxS". (ODP)

(u,/l) Xe

La dualité forte robuste est dite vérifiée pour le probleme convexe conique incertain (P) si
la valeur de la contrepartie robuste coincide avec celle du dual optimiste ou cette derniere

est atteinte. Autrement dit, la dualité forte robuste est vérifiée si :
inf (RP) = max (ODP). (3.2)

Cette terminologie de dualité forte robuste a été introduite dans [43]. Aussi, on rencontre

cette notion dans [7] et [36] sous le nom “primal worst eqals dual best”.

Proposition 3.4. La valeur du dual optimiste est toujours plus petite que la pire valeur
c’est-a-dire :

sup (ODP) < sup (Q). (3.3)

Preuve.

La dualité faible lagrangienne entre (P,) et (D,) pour chaque u € U donne
sup inf{f(x) + Ag,(x)} < inf (P,).
Aes+ ¥eX
En prenant le sup sur U, on obtient
sup (ODP) = sup inf{f(x)+ Ag,(x)} < supinf (P,) = sup (Q).
AeS+ uel ¥€X uel
Proposition 3.5. Si la dualité forte robuste est vérifiée, alors

inf (RP) = max (Q).

Preuve.

D’apres la Proposition 3.1, on a
sup (Q) < inf (RP)

et la Proposition 3.4 donne
sup (ODP) < sup (Q).
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Ces deux propositions couplées a la dualité forte robuste nous permettent d’affirmer que
max (ODP) = sup (Q) = inf (RP).
1 existe donc (i, ) € U x S* tel que
inf{ f(x) + Aga(0)} = inf (RP) = sup (Q) = inf(Py) > inf{£(x) + Aga()}.

Par conséquent,
inf(Py;) = sup (Q) = sup{inf(P,)} = inf (RP).

uelU
D’ou,
sup (Q) = max (Q) = inf (RP).

O

Dans le but d’obtenir la dualité forte robuste, nous rappelons deux résultats de dualité

épigraphique.

Lemme 3.4. [15, Theorem 8.3] Supposons que f € T'y)(X), g : dom(g) C X — Y est S-
convexe fermée par épigraphe et g7'(=S) (" dom(f) # 0. Alors, les assertions suivantes

sont équivalentes :

(i) . (xi)lel(f_ S){f () = (", 2} = max g(xi)g(f_ S){f () = (x", x) + Ag(0)}, VX' e X,

(ii) U epi(f + Ag)* est w*-fermé.

AeS*
Lemme 3.5. [29, Corollary 5] Supposons que f € I'o(X), g : dom(g) c X — Y est S-
convexe fermée par épigraphe et g7'(=S) (" dom(f) # 0. Alors, les assertions suivantes

sont équivalentes :

(i) Jnf 1fO0)=max inf 1/(x)+Ag(0),

(ii) U epi(f + Ag)" est w*-fermé par rapport a {Ox-} X R.
Aes+

Proposition 3.6. Supposons que (F€') est vérifiée et que pour tout u € U, [’ensemble

U epi(f + Ag,)" est w*-fermé par rapport a {Ox-} X R ; alors,
AeS*

sup (ODP) = sup (Q).

Preuve.

Pour chaque u € U, en appliquant le Lemme 3.5 a la fonction g,, on obtient

inf{f(x)} = max inf {f(x)+ Ag,(x)}.

XEFu AeS+ gu(x)e(_s)
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En prenant le supremum sur U, on obtient :
sup (Q) = sup (ODP).
m]

Remarque 3.1. Considérons I’exemple 3.1. Du fait que la condition de qualification de
Slater est vérifiée, en se référant par exemple a la Remarque 4.3 de [23] on peut en déduire

que I’ensemble U epi(f + Ag,)" est fermé. Ainsi, concernant toujours 1’exemple 3.1, il
120
résulte de la Proposition 3.6, que

sup (Q) = sup (ODP),

et donc
sup (ODP) < inf (RP).

Notons par
Argmin(Q) :={u € U : inf(P,) =sup(Q)},

I’ensemble des solutions optimales de (Q).

Théoreme 3.2. Supposons qu’en plus de la condition (F€), les conditions suivantes sont

aussi vérifiées :

U epi(f +ip,)" est convexe w*-fermé par rapport a {Ox-} X R, (3.4)
uelU

gu est S-convexe fermée par épigraphe

du € Argmin(Q) : 3.5)
U epi(f + Agn)” est w*-fermé par rapport a {Ox-} X R.
AeS*
Alors, la dualité forte robuste est vérifiée.

Preuve.

D’apres le Corollaire 3.1 et la condition (3.4), on a :
inf (RP) = max (Q);
il existe donc u € U vérifiant (3.5) tel que
inf (RP) = max (Q) = inf(Py).
Il résulte du Lemme 3.5 que
inf (RP) = inf(P;) = max(Dy)
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et par définition du dual optimiste, on a
inf (RP) = max(Dy) < sup (ODP).
D’apres la Proposition 3.4, on a
sup (ODP) < sup (Q),
d’ou
sup (ODP) < sup (Q) < inf (RP) = max(Dy) < sup (ODP),

et donc
inf (RP) = max (ODP).

O
On dit que la propriété de dualité forte robuste est vérifiée en un point x* € X* si
inf{ f(x) — (&%, 0} = Jnax inf{ f(x) = (x7, x) + Agu(x)}- (3.6)

Si x* = Ox-, on retrouve la propriété de dualité forte robuste.
Si la propriété de dualité forte robuste est vérifiée en tout x* € X*, on dit que la propriété

de dualité forte stable robuste est vérifiée pour le probleme (P).

Corollaire 3.3. Supposons que (") est vérifiée et

U epif* + K, est convexe w*-fermé, (3.7)
uelU
Yue U, U epi(f + Ag,)" est w”-fermé. (3.8)

AeS*
Alors, la dualité forte stable robuste est vérifiée.

Preuve.
D’apres le Lemme 3.3 et la Proposition 3.2, on a

| Jepitf +ir) = Jepif + K,

uelU uelU

U epi(f + ir,)" est donc convexe w*-fermé et par conséquent, d’apres le Corollaire 3.2,

uelU
pour tout x* € X*,

inf{f(x) — (", x)} = max inf{f(x) - ", 0}

= inf{f(x) - (x*, x)} (pour un certain u € U)

u

= max inf{f(x) — (x*, x) + Agz(x)} (d’apres le Lemme 3.4 et (3.8))

AeS+ xeX

=inf{f(x) - (x",x) + Aga(x)} (pour un certain A € S ™)
XE

< sup inf{f(x) — (x*, x) + Ag.(x)}.

uel,nes+ ¥eX
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En appliquant la Proposition 3.1 et la Proposition 3.4 a la fonction f — (x",.), on obtient :
sup inf{ f(x) — (x", x) + Ag.,(0)} < inf{f(x) — (x", X)}.
uel,aes+ ¥€X xer
D’ou I’égalité
inflf() ~ () = max inf(£(x) — (x',x) + A, ()

O

Remarque 3.2. Si pour tout u € U, la fonction g, : X — Y est S -convexe par épigraphe
et continue, alors pour tout A € S*, la fonction Ag, est convexe et continue. Ainsi, a partir

du théoreme de Moreau-Rockafellar [54], on déduit que

epi(f + Ag.,)" = epif” + epi(4g.)”.
Dans ce cas, la condition
Yue U, U epi(f + Ag,)" est w*-fermé
A5+

devient

Yue U, epif” + K,, est w'-fermé.

La dualité forte robuste a €té établie dans [43, Corollaire 3.1] dans le cas ou les fonctions
gu : X — Y sont S -convexes par épigraphe et continues sous la condition
epif” + U K,, est convexe w"-fermé. 3.9)
uelU
Proposition 3.7. La condition
U epif* + K,, est convexe w’-fermé (3.10)
uelU

est plus faible que la condition (3.9).

Preuve.

En effet, on a

epif” + U K, C U (epif* + K,,) C (epif* + U Kgu] C %(epif* + U K ]

uelU uelU uelU uclU

Si la condition (3.9) est vérifiée alors, les inclusions ci-dessus deviennent des égalités et
en particulier, on a

| i +K,) =70 (epif* + Kgu] :

uelU uelU
ce qui permet de conclure. O
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CHAPITRE 4

Optimisation quadratique a données incertaines

4.1 Introduction

Considérons le probleme quadratique suivant :

1
minimiser ExTAx +alx (OP)
1
s.l.c ExTBx +bx +8<0,

Hx =d,

ouA e S ab e R,BeR,deR" H est une matrice d’ordre m X n, n,m € N* et
(B,b) € S" x R". Lorsque les données a et b sont tous nuls le probleme (QP) est dit ho-
mogene et dans le cas contraire il est dit non homogene.

Les problemes de la forme de (QP) apparaissent dans plusieurs domaines d’applications
tels que la communication sans fil et le traitement du signal ([32], [46], [49], [59]). Le
probleme (QP) est largement étudié dans la littérature ([42],[50]) notamment en sa forme
particuliere appelée “trust-region problem” ou il n’y a pas de contrainte d’égalité ([25],
[38], [62], [63], [68]). Les caractéristiques du probleme qui peuvent étre étudiées sont
entre autre le saut de dualité ([24], [62]), la relaxation de la programmation semi-définie
([52], [67]) et la caractérisation de la solution ([39]). Dans les applications concretes, les
données sont souvent incertaines dues a la modélisation ou aux erreurs de mesure. Par
conséquent, comment développer une approche mathématique capable de traiter les in-
certitudes dans les données devient une question cruciale en optimisation mathématique.
Plusieurs approches ont été¢ développées telles que I’approche déterministe ([9],[10], [11],
[12], [13], [14], [21], [36], [43], [57]) et I’approche stochastique ( [58]).
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

Jeyakumar et Li ([37]) ont considéré le probleme (QP) sans la contrainte d’égalité avec
des incertitudes au niveau de la contrainte d’inégalité. Ils ont caractérisé dans ce cas les

solutions de la contrepartie robuste.

Nous considérons le probleme (QP) avec des données incertaines au niveau de la contrainte
d’inégalité, dans le cas homogene puis dans le cas non homogene. Du faite de la présence
de la contrainte d’égalité, les versions robustes du théoreme des alternatives et du S-
lemma établies par Jeyakumar et Li ne nous permettent pas d’établir la caractérisation
des solutions optimales robustes. Nous établissons donc d’autres versions robustes plus
générales de ces résultats. Dans chacun de ces cas, notre objectif est de donner une condi-
tion nécessaire et suffisante permettant de caractériser les solutions de la contrepartie ro-

buste du probleme.

4.2 Solution robuste d’un probleme quadratique homogene
a données incertaines

Nous considérons le probleme d’optimisation quadratique homogene avec une contrainte

d’inégalité soumise a une incertitude et une contrainte d’égalité :

minimiser %xTAx
|7
sx'Bx<pB
? (UQP)

s.dl.c
Hx=d,

ouAeS",BeR, deR" HeR™ n,meN*etBe S"estincertain et appartient a un
ensemble incertain U = {By+uBy : u € [uo, u11}, ot g, g € R 1 g < g et By, By € S
On définie la contrepartie robuste du probleme (UQP) par :

minimiser %xTAx
;xX'Bx <, VBe U
s lc (RCQO)
Hx=d.

Définition 4.1. x; est une solution optimale robuste du probleme (UQP) si x, est une

solution optimale du probleme (RC Q).

Dans le but de caractériser les solutions robustes du probleme (U QP) nous allons établir

un résultat plus général du S-lemma a partir d’un théoreme des alternatives robustes.
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

Théoreme 4.1. Soient A, By, B; € S", po, 11 €ER @ po <pu, aeR, BeR ayeR" et S

un sous-espace vectoriel de R". Supposons que I’ensemble
{(x"Ax, x"(Bo + poBy)x, x" (By + 11 B1)x) : x € ag + So} 4.1)

est convexe.
Alors, exactement une seule des assertions suivantes est vérifiée :
() Ixecap+Sy : IxTAx<a, IxT(Bo+uB)x<pB, Y p € [uo,pl,
(i)
(20, A1) € RI\{(0,0)}, T € [po. 1]
Vxeay+ Sy, A (%xTAx - a) + A4 (%xT(BO + uBy)x —ﬁ) > 0.

Preuve.
Montrons que (ii) = non(i).

Supposons que (ii) est vérifié. Si (i) est vérifi€ alors
1 7 1
Axe€eag+ Sy, : Ex Ax—a <0 et Ex (Bo+uB)x—-B<0, Yue [u,ul.
Par suite, Y(1p, 1;) € R2 \ {(0,0)},
1 1
/10(§X Ax—a) + /11(5)6 (By +,uBl)x —ﬂ) < 0.

Ce qui contredit (i7), donc non(i) est vérifiée.
Montrons maintenant que non(i) = (ii).

Pour cela, montrons que 1’ensemble
Su = {(x"Ax, rgagi x'Bx) 1 x€ap+So}+ intRi
€

est convexe, ou U = {By + uB; : u € [uo, 111}
Soient (eg, by), (e1,b1) € Sy, Axg, X1 € ag + So, (Ao, ¥0), (A1, 1) € intR3 tels que

T _ . T _
XgAxg+ g =€y ; rgeagi Xy Bxo + yo = by
T _ . T _
.Xlel +4d; =e; ; max X Bx; + Y1 = b
BeU
donc
T . T
XoAxog < ey ; maxx,Bxy < by
BeU
4.2)
TA . T
x| Ax; <ep rgal;( X, Bx; < b
€
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

Comme pour chaque x fixé dans ag+ S, I’application u — x” (B, +uB;)x est affine alors
elle atteint son maximum en un point extrémal de [uo, (1] qui est uy ou ;. D’ou, pour
tout x € ag + Sy,

max x! Bx = max{x’ (B, + HoB1)x, xI(By + w1 B1)x}.

BeU

Par conséquent, le systeme (4.2) devient
xXpAxg < ey 5 x((Bo+ poBi)xo < by 5 x)(Bo+ p1B1)xo < by
x{Ax; <ey 3 x{(Bo+poBy)xi < by i x{(By+uB)x; < by,
d’ou
(eg, by, by) € {(xTAx, xT(By + poB1)x, xT(By + ,u]Bl)x) TXE€ayg+ So)+ intRi
(e1,b1,b)) € {(xTAx, xT'(By + poB1)x, xT(By + ,ulBl)x) i x €ag+ Sy} +intR3.
Par hypothese, I’ensemble
{(x"Ax, x"(By + poB1)x, x" (By + t11B1)X) : x € ag + So} + intRi
est convexe. Il en résulte que pour tout A € [0, 1],
e, by, bo)+(1=A)(ey, by, by) € {(x" Ax, x" (Bo+uoB1)x, x" (Bo+1 B1)X) 1 X € ag+So}+intR> .
D’ou, il existe x, € ay + S tel que :

XPAXy < ey + (1 = ey

sz(Bo +/.l()Bl)XQ < Abg+ (1 — Db,

X2 (By + p1B1)xy < Aby + (1 — )by,
ce qui implique que

XTAxy < Aeg + (1 = ey

max X3 Bxy < Aby + (1 — A)b;.

Ainsi, A(ey, by) + (1 = (e, by) € Sy, ce qui signifie que Sy est convexe.
Comme (i) n’est pas vérifiée, alors (2a, 23) ¢ S . En appliquant le théoreme de séparation
entre {(2a,2B)} et Sy, ona:

(2, A1) € R2\{(0,0)} : Vx€ag+So, A(x"Ax)+ 2, max x" Bx > 2ady + 2BA,.
€
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

Par suite, . .
T T
— - — -B) >
/lo(zx Ax—a) + /11(2 Igleagcx Bx-pB)>0.
Comme
I{}lag( xT Bx = max{x” (B + HoB1)x, xI(By + U1 By)x}
S
alors

1
Vx e a0+S0, 5 max{xT(/loA+/11(B0+,uoBl))x, xT(/loA+/11(B0+,ulBl))x}—(/loa/+/11ﬁ) > 0.
Par conséquent, le systeme

XE€Eap+ S

IxT(A0A + ((By + oB1))x < doa + 418

%XT(/l()A + A1(By + ,u]B]))X < Joa + 418

n’a pas de solution. D’apres le Théoreme 1.5, il existe (dp, 0;) € Ri \ {(0,0)} tel que

1
Yx€ag+Sy 0o (E)CT(/loA + /ll(B() + /.l()Bl))X — A + /llﬂ) +
1
01 (EXT(/l()A + /l](BQ +,ulBl))x - Ao + /hﬁ) >0;
c’est-a-dire,
- (1 - (1
Vx€ay+So, A (ExTAx - a) + A (ExT(BO + uB)x —,8) >0,

_ Oopo + 014y

/_12/1(5+5,/_l=/15+5 et
0 = Ao +01) 1 1(60 +61) P

Par construction, on a (1o, 4;) € R2 \ {(0,0)} et u € [uo, p11].

Finalement,
(Ao, A1) € RIN{(0,0)}, T p € [mo 1] :

_ (1 - (1
Yxe€ag+Sy Ao (ExTAx — a/) + A (ExT(BO + uB)x —,8) > 0.
D’ou (@i). m]
On déduit du Théoréme 4.1 une version robuste du .S -lemma.

Corollaire 4.1. Soient A, By, B, € S", « € R, B € R, ay € R", S un sous-espace vectoriel

de R" et pop, 1 € R @ poy < py. Supposons que I’ensemble
{(xTAx, x"(Bo + poB1)x, x" (By + 1 B1)X) @ x € ag + S}

est convexe et qu’il existe xy € ayg + S tel que %xg(Bo + uB1)xo — B < 0, Yu € [uo, 1]

Alors, les assertions suivantes sont équivalentes :
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

1 1
(i) x€ay+So, ExT(BO +uB)x—B <0, Yu € [uo, 1] = ExTAx —a>0,

1 1
(i) 3120, Ju € o] = Va€ap+So, sx Ax—a+ /l[ixT(Bo +uB)x - B 2 0.
Preuve.

Si (i) est vérifiée, on a

1 1
ExTAx -—a > —/l[ExT(BO + iuB)x —ﬁ], Vxeay+Sy.

Soit x € ag + S tel que

1
EXT(BO +uB)x =B <0, Yu € [uo, 1],

en particulier, pour u = fi, on a

1 1
ExTAx —a> —/I[EXT(BO + idB)x —,3] >0

et (i) est vérifiée.
Il reste a montrer que (i) = (ii).

Supposons que (i) est vérifiée. Il n’existe donc pas de x € ay + S tel que

1xT(By + uB)x =B < 0, Yu € [uo, 1]

%xTAx —a<0;
ce qui veut dire que le systeme

X€ap+ 39S

3xT(By + uB)x — B < 0, Y € [uo, 1]

%xTAx —a <0,

n’a pas de solutions. D’apres le Théoreme 4.1, A(1y, ;) € Ri \ {(0,0)}, di € [uo, 1] :
Vxeay+ Sy Ao (%xTAx - a) + A (%xT(BO + uB)x —ﬁ) > 0.
Sidyg=0alors 4g # Oeton a
Vx€ay+Sy A (%xT(BO + iB))x —,8) >0,
en particulier, pour x = x,
A (%xg (Bo + B —ﬁ) > 0;
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

ce qui contredit I’hypothese

1
EXT(BO +uB)x — B <0, Yu € [uo, 1]

Par conséquent, 4y # 0 et on en déduit que

1 A (1
Yxeay+So, —xTAx—a+ = —x"(By + iBy)x - 8| > 0.
2 Ao \2

Il existe donc 4 € R, u € [uo, u1] tels que
1, 1, N s
Vx€ay+So, Ex Ax—a+ A1 Ex (Byg + uBy)x —B|>0,d’ou (ii).
O

Nous allons maintenant caractériser les solutions optimales robustes du probleme (U QP).
Considérons F = {x e R" : 3x"Bx <, VB € U et Hx = dJ.

Théoreme 4.2. Soient ay = x € F, c’est-a-dire une solution admissible robuste de (U QP)

et Sy = ker H. Supposons que :
dxo €ap+ Sy : %xg(Bo +uB)xo —B <0, Yu € [uo, ]
et que l’ensemble
{(xTAx, x" (By + HoB1)x, xI(By + miB)x) : x €ag+ So} est convexe.

Alors, X est une solution optimale robuste du probleme (U QP) si et seulement s’il existe

A1>0, i€ [ug, 1] tels que

A 337 (Bo + iB)x - B| = 0

JyeR™ : (A+A(By + iB)x+ H'y =0 (4.3)

Z'(A+ A(By + fiB;))z > 0, ¥z € ker H.

Preuve.
Soient X une solution optimale robuste du probleme (U QP) et
So=kerH :={xeR" : Hx=0}.0na

1 1 1
xex+So, 5xT(B0 +uB)x < B, Yu € [uo, 1] = 5xTAx > szAx.
Soit @ = 3x" Ax. D’apres le Corollaire 4.1
_ 1, 1, _
A1 >0, i € [uo, 1] : Yxeag+ Sy, Ex Ax—a+ /1[5)( (By + aBy)x —,8] >0; 4.4
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

en particulier, pour x = X, on a
1 _, o
/l[ix (By +,UB])X —B] >0,
comme X vérifie les contraintes du probleme (RCQ), on a aussi
1_, o
EX (By +/1B1)X—ﬁSO.

On en déduit que
1
/l[EXT(Bo +AB)x - | = 0.
D’ou, d’apres (4.4), 1a fonction h; : ¥ + Sy — R, définie par

1
ha(x) = ExTAx —a+ /l[xT(BO + iB)x —/3],

atteint son minimum en x sur x + S .
Comme X + Sy = {x € R" : Hx = d}, alors la condition nécessaire d’optimalité de /; sur

X+ Spest:

Ay eR” : Vhg(x)+H'y=0 (condition de 1°" ordre)

7' V2ha(%)z > 0, Yz € ker H (condition de 2" ordre);

c’est-a-dire
Iy eR™ : (A+A(By+aB)x+H'y=0

(A + A(By + iB)))z > 0, ¥z € ker H.

En récapitulatif, x vérifie : il existe 4 > 0, i € [y, 1] tels que

377 (Bo + iB)x - B| = 0

Iy eR™ : (A+A(By+aB)x+H'y=0

Z'(A+ A(By + jiB)))z > 0, ¥z € ker H.

Inversement, soit X € F et supposons qu’il existe 4 > 0, i € [ug, ;] tels que (4.3) soit
vérifié.

Soit la fonction h; : R" — R définie par
ha(x) = %xTAx — o+ A|x"(By + iBy)x - B|.
Pourtout x € F,ona
ha(x) = ha(®) + (x — X) Vhg(%) + %(x - %) V2 hy(X)(x - X).
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4.2. SOLUTION ROBUSTE D’UN PROBLEME QUADRATIQUE HOMOGENE A DONNEES INCERTAINES

Comme H(x — X) = Hx — Hx = d — d = 0 alors, d’apres le systeme (4.3),
1 1
F0r= )V ha(%)(x - %) = 70— ) (A + A(By + iB))(x — X) > 0.
De plus, d’apres toujours le systeme (4.3),
(x =) Vhy(%) = (x = %) (A + A(Bo + zB1)X) = (x— 0" (=H"y) = (-y" H)(x— 1) = 0.
Par suite, on a h;(x) — hy(%) > 0, ce qui implique que
1 1 1 1
5xTAx + /l(ExT(BO +[iB)x - ) — EXTAX —~ /I(EJ_CT(BQ +aB)x—pB) >0,
d’ou
1, 1, _ I _, . _ I _; o
Ex Ax > —/l(Ex (By + iBy)x — B) + Ex AX + /l(ix (By + iaB1)x — ).
On a .
J(EXT(BO +pB)x-p) =0,
d’apres le systeme (4.3) et comme x est une solution admissible robuste de (U QP) alors

/l(%xT(Bo +[B)x—pB) <0.

Par conséquent,

1 1
—xTAx > ExTAx

2
et donc, X est une solution optimale robuste de (UQP). m|

Nous faisons remarquer que la caractérisation des solutions optimales robustes des problemes
quadratiques homogenes incertains donnés dans ([37]) est un cas particulier du Théoréeme
4.2.

Corollaire 4.2. Supposons que H := 0,d = 0 et 8 > 0. De plus, supposons que I’ensemble
{(xTAx, xT(By + HoB1)x, xT(By + u1B)x) : x € R"} est convexe.

Alors, X est une solution optimale robuste du probleme (U QP) si et seulement s’il existe

>0, i € [ug, 1] tels que

357 (By + 1B)% - B] = 0

(A+A(By+ aB)x =0 4.5)

(A + A(By + aBy)) = 0.

Preuve.
11 suffit de prendre H = 0, d = 0 et 8 > 0 dans le Théoreme 4.2. O
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4.3. SOLUTIONS ROBUSTES D’'UN PROBLEME QUADRATIQUE NON HOMOGENE A DONNEES INCERTAINES

4.3 Solutions robustes d’un probleme quadratique non

homogene a données incertaines
Nous considérons dans cette partie le probleme suivant :
1
minimiser ExTAx +a'x

1
s.l.c ExTBx +b'x +8<0,

Hx =d,

(UNH)

ouA e S ab e R,BeR,de R" H est une matrice d’ordre m X n, n,m € N* et

(B,b) € S" x R" est incertain et appartient a un ensemble incertain V = V|, X V| avec
Vo ={Bo+uBy : p € [uo, 11}, Vi = {bo +6by : 6 € [60,01]} ou po, s € R = o < py,

00,01 €ER : 5y <6y, By, By esS” Ctbo,bl e R".

La contrepartie robuste du probleme (UNH) est :
1
minimiser ExTAx +a'x

1
s.l.c ExTBx +b'x +B8<0, Y(B,b)eV,
Hx=d.

Soient @ € R, ag € R", S sous-espace vectoriel de R” et

o= A1) ) @) -soesens

un ensemble avec

_ A (Aag + a)
pP= (_AT “_) :{ ]
a 2«

(Aag + a)’ 2(%agAao +a’ay + @)

By + (0B (Bo + poB1)ag + by + 60b,
Qo =
((Bo + oB1)ag + by + 6ob1)" 2 (%05(30 + poB1)ag + (by + Sob1)" ag +,3)
et
By + (1B, (Bo + u1B1)ag + by + 61b,
0, =

((Bo + pu1B)ag + by + 616" 23
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4.3. SOLUTIONS ROBUSTES D’'UN PROBLEME QUADRATIQUE NON HOMOGENE A DONNEES INCERTAINES

Théoreme 4.3. Supposons que I’ensemble Q est convexe. Alors, les assertions suivantes

sont équivalentes :

' 1
@) %rlgla‘l/xxTBx+mabex+,3§0, X€ay+Sy = ExTAx+aTx+a20,
€Vo

beV,
(i)
3(/107 /ll) € R-Z}- \ {(0’ O)}a Hl'l € [/J()alll]a 35 € [507 61] : V.x € ap+ SO?
1 r T 1, T
Ao 7 Ax+a' x+a|+ 7% (Bo + uB1)x + (by + 6b) x+ 3] > 0.
Preuve.

Il est clair que (ii) = (i). Montrons que (i) = (ii).

(i) entraine que le systeme suivant n’a pas de solution sur ag + S :

%xTAx+aTx+a <0

1 T T
-maxx' Bx+maxb' x+B8<0
2 T may B (4.6)

XE€ap+Sy.
(4.6) est équivalent a :

%xTAx+ a'x+a<0

IX'Bx+b"x+B <0, Y(B,b)eV

XEay+Sy.
De plus, le systeme (4.6) est équivalent au systeme

%(ao +0)TA(ag+x)+a’(ap+x)+a <0

L(ao + )" Blag + x) + b"(ap + x) + B <0, Y(B,b) €V 4.7)

xedSy,

en ce sens que si x’, x sont respectivement solutions optimales de (4.7) et de (4.6) alors
x = ag + x'. Par suite, le systeme (4.7) n’a pas de solutions si et seulement si le systeme

(4.6) n’a pas de solution.
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Une réécriture du systeme (4.7) donne le systeéme suivant :

IxXTAx+d' x+a <0
LXTBx+D x+B <0, V(B,b) €V
xeSo (4.8)

avec a = Aag+a , Ez—aoAao+a ap + a,

b=Bay+b , ,E’_ —aOBa0+bTao+,8

Montrons que le systeme homogene suivant issu de I’homogénéisation du systeme (4.8)

n’a pas de solutions sur Sy X R :

IXTAx+f@" x+ar* <0
\XTBx +1b x+Ji <0, V(B,b) € V
xeSpteR 4.9)

avec a = Aay +a , Ez—aoAa0+a ap + a,

b=Bay+b , B= 1alBay + b ay + B.
Supposons qu’il existe (xg, %) € So X R tel que :

—.XOAX() + l()a Xo + at2 <0

1xiBxo + tob Xo + B2 <0, Y(B,b) € V.

Si ty # 0, en divisant les inégalités par 2, on obtient :

T
%(@) A(@)+5T(@)+a< 0
o o to

T
é(ﬁ) B(@)+ET(?)+B< 0, Y(B,b) €V,
0

Iy Iy

X0 < . . ..
comme — € S, alors le systeme (4.8) a une solution, ce qui est une contradiction car le

0
systeme (4.8) n’a pas de solutions sur S .
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Si 1y = 0, alors x( vérifie le systeme suivant :

1.7
3% Axo <0

3x0Bxog <0, YBe V.

Posons x, = nxy, n€N,ona:

o1 o1 _ _
lim —x,{Axn = lim —x’Ax, + aTx,, +a=—00

n—+oo n—stoo 2
et
.1 5 .1 7 —T —
lim ix" Bx, = lim Ex" Bx,+b x,+=—c0, Y(B,b)€eV.

n—+oo n—+o0o

On observe que pour n assez grand, x, est une solution du systeme (4.8), ce qui est une
contradiction. On conclut que le systeéme (4.9) n’a pas de solutions sur Sy X R c’est-a-dire

que le systeme

IxTAx + t(Aag + @) x + (3al Aag + a"ag + @) < 0

3x7(By + uBy)x + t[(By + uBy)ag + (by + sb)] x + (3a Bag + (bo + 6b1)" ag + B)i* < 0,
V(l,l, 6) € [#Oa/ll] X [60, 51]

xeSyteR
(4.10)

n’a pas de solutions sur Sy X R.

Si Mo < My, Soient :

= |- —| = s
a 2 (Aap + a)T 2(%agAao +alay + @)
B() Boao + bo + —6oﬁi:i;ﬂob1
M() =
Sor1 =810 1, \© 1. T Sou1 =810 5, \T
(B()Clo + b() + Wbo) 2 54, Boag + (b() + Wbl) ap +ﬁ
t

’ B B 01200,
1 140 + H1—Ho 1

M1:

T
01—09 ) (l T 61=60 1,T )
(Blao + lll—llobl 2 zaOBlao + ,ul—/lobl ap) .

D’apres (4.10), le systeme suivant
| T
X X
= D <0
2\t (t)

T

X
(M, +'UM1)(I) <0, Yu € [uo,p1l,

| =
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n’a pas de solutions sur Sy X R.

De plus,ona:

(2 6 oo (3 oo ) s -

est convexe par hypothese, donc d’apres le Théoreme 4.1, 4(4p, 4;) € Ri \ {(0,0)},
du € [uo, 1] : Yix, 1) € So X R,

() o) Y om0

1 1
4.11) = A (ExTAx +t(Aag + a) x + (EagAao +alay+ a)tz) +

Ona

1 1
A (sz(Bo + uB))x + 1[(By + uBy)ag + (bo + 6b1)]" x + (Eag Bag + (by + b)) ag + ,B)tz) >0

avec

_ (=60 + (= o) c

0
(1 — Ho)

[60’61]'

Pourt=1,0na
l 7 T 1 7 T
Ao Ex Ax+ (Aay +a)" x+ (anAaO +a ap+a)|+

1 1
A (ExT(BO + uB)x + [(Bo + uB)ag + (bo + 6b)]" x + (Eag Bag + (by + 6by) ay + ﬁ)) >0
ce qui est équivalent a

1 T T
Ao §(x+ao) Alx+ag)+a (x+ag) +al|+
1
A (E(x +ag)  (By + uB))(x + ag) + (by + 6b))" (x + ap) +/3) > 0.

Par suite,

A9, A1) € R2\ {(0,0)} , Ju € [0, 11,36 € [60,61] : Vx € ap + S,

1 1
Ao (ExTAx +alx+ a/) + A (ExT(Bo + uB)x + (by + 6by)" x +,3) > 0.

Si pop = py, posons

A (Aay + a)
D:[ ],

(Aag + a)” 2(%agAa0 +a’ay + @)
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By + poB, (Bo + poB1)ag + by
M() =

((Bo + poB1)ag + by)" 2 (4al (By + poB)ag + bl ao + )
On><n bl
M] = .
b{ 2b1T(10

D=P (My+o6oMy) = Qo, (My+06M;)= 0y,

et
Dans ce cas, on a bien

d’ou I’ensemble

(62 ) o= (f om s () s

est convexe par hypothese.
T
* D[x] <0
t

T

Comme

| =
~

(4.10) =

1(x X
t

5 ; (M0+5M1)[ )<O, VéE[éo,(Sl],

alors d’apres le Théoreme 4.1, A(Ay, 4;) € R2 \ {(0,0)}, 36 € [60,61] : Y(x,1) € So X R,
A 1)‘TDX bl leM sMp |t =0
ol5 s t+12t(0+ l)t_'
Pourr=1,0na
1 T 1 T
Ao Ex Ax + (Aag + a) x+(§a0Aao+a ag+ a) |+

1 1
A (EXT(BO + ioB1)x + [(Bo + oB1)ao + (by + 6b1)]" x + (Eag Bagy + (by + 6b1) ay + ,8)) > 0.

Par conséquent,

(29, A1) € R2\ {(0,0)},36 € [60,61] : Vx €ap+ S,

1 1
Ao (ExTAx +a'x+ a) + A (ExT(BO + toB1)x + (b + 6by)" x +ﬁ) > 0.
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Corollaire 4.3. Supposons qu’il existe xo € ap + S tel que :
1
Exg Bxo+b"xo+B<0, V(B,b)eYV, (4.12)

et que I’ensemble Q est convexe.

Alors, les assertions suivantes sont équivalentes :
N1 T T 1 7 T
(1) smaxx Bx+maxb' x+B<0, x€ay+So= -x Ax+a x+a =0,
BeV beV) 2
(if)

dAe Ry, du € [po, p1],36 € [60,01] : Vx € ag+ So,

1 1
(ExTAx +alx+ a) + /I(EXT(BO +uB))x + (by + 6b)) x + 8] > 0.

Preuve.
Il suffit de montrer que (i) = (ii) car il est clair que (ii) = (i). Supposons que (i) est
vérifié.

D’apres le Théoreme 4.3, on a

Ao, A1) € RZ\ {(0,0)}, Ju € [1o, 1], 35 € [60,61] = Vx € ap + S,

1 1
Ao (ExTAx +a x+ a) + 44 (ExT(BO +uB))x + (by + 6b))" x +ﬁ) > 0.

Si dg = 0, alors Ay (3x7 (Bo + uB1)xo + (by + 6b1) x0 + ) = 0 et d’apres (4.12), 4; = 0,

ce qui contredit le fait que (4o, 41) # (0, 0). Par conséquent Ay # O et il en résulte que
1 T T A (1 T T
Ex Ax+a x+a|+ = Ex (By + uBy)x + (by + 6b1)" x+ B = 0.
0

O

Nous allons maintenant caractériser les solutions optimales robustes du probleme (UNH).
Théoreme 4.4. Soient X une solution admissible robuste du probléme (UNH). Supposons
que @ = —(3XTAX +a"%), ag=% So=ker(H) et qu’il existe Xy € ag + S tel que

1

Exg Bxo+b"xo+B<0, V(B,b)eYV, (4.13)

et que l’ensemble

(01T (1T 0 ) oesons)
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est convexe. Alors, X est une solution optimale robuste du probleme (UNH) si et seulement
si: A e Ry, du € [uo, p1], A6 € [60,01] -

A (35" (By + uB1)X + (b + b))%+ B) = 0

dy e R™ : (A+ A(By +uB)x+a+ A(by+ b))+ H'y =0

ZT(A+ A(By + uBy)z > 0, si Hz = 0.

Preuve.

Soient X une solution optimale robuste du probleme (UNH). On a

1 1
—maxxTBx+mabex+,8§O, xex+Sy= —x'Ax+d'x+a>0.
2 BeV, beV, 2

D’apres le Corollaire 4.3,

die R+a 3/'1 € [M07M1]’ do € [60’ 51]9 Yxex+ SO’

(%xTAx +alx+ a) +A (%xT(Bo + uB))x + (by + 6b)) x +B) > 0.
En particulier, pour x = X, on a
A (%xT(Bo + uB)E + (by + 6b) % + ﬁ) > 0.
Comme x vérifie les contraintes du probleéme (RCNH), on a aussi
%)‘CT(BO + uB)X + (by + b)) x +B < 0.

On en déduit que

1
A (EXT(BO + uB)X + (by + 6b) 3 + B) =0.
Par conséquent, la fonction £, définie par
1 T 1 T
h,(x) = Ex Ax+a x+a|+A4 Ex (Bo + uBy)x + (by + 6by)" x + 5],

atteint son minimum en X sur X + 5.
Comme X + Sy = {x € R" : Hx = d}, alors la condition nécessaire d’optimalité de h, sur

X+ Spest:
dyeR™ : Vi () +H'y=0

Z'V2h,(%)z 20, siHz=0,
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c’est-a-dire

dyeR™ : (A+ A(By+uB)x+a+ A(by+ b))+ H'y=0

(A + A(By + uB))z > 0, sizekerH.

On déduit que x vérifie :
dA e Ry, du € [uo, u1], 36 € [69,01] :

(33" (B +uB1)X + (bo + 8b1)" X +B) = 0

dyeR™ : (A+ A(By+uB)X+a+ A(by+ b))+ H'y =0

Z'(A+ A(By + uBy))z > 0, siz e kerH.
Réciproquement, supposons qu’il existe x € R, 1 € R, u € [ug, 111,06 € [00, 01], tels que

A (L5 (By + uBy)X + (by + b)) %+ B) = 0

dyeR™ : (A+ A(By+uB)x+a+ Aby+ b))+ H 'y =0 (4.14)

Z'(A+ A(By + uB;1))z >0, sizekerH.

Soit
1 1
hy(x) = (ExTAx + aTx) +A (EXT(BQ +uB)x + (by + b)) x + B

et une solution admissible robuste x de (UNH). On a
(X)) = hy(3) + (x — X) VA, (%) + %(x - O V2h,(®)(x - X).
Comme H(x — X) = Hx — Hx = 0 alors, d’apres le systeme (4.14),
%(x - X' Vh,(X)(x - %) = %(x - ) (A + A(By + uB)))(x — X) > 0.
De plus,
(x=%)" Vh,(X) = (x=%)" (A+A(Bo+uB,))x+a’ +(by+6b))") = (x=%)" (-H"y) = (0" H)(x—%))" = 0.

Par suite, on a h,(x) — h,(%) > 0, ce qui implique que
1 1 1
ixTAx +alx> E)_CTA)_C +a'x+ 2 (E)_CT(BO +uB)X + (b + 6b))" % +,8) -

1
A (EXT(BO + uB))x + (by + 6b))" x +,8) .
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OnaA (%)_CT(BO + uB)x + (by + 6b))T x +,6’) =0, d’apres le systeme (4.14) et comme x

est une solution admissible robuste de (UNH) alors
1
Pl (ExT(BO + uB)x + (by + b)) x + B) <0.

Par conséquent, %xTAx +alx> %XTAX + a’ x et donc X est une solution optimale robuste
de (UNH). O
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Conclusion et perspectives

Conclusion

L’objet de cette these était d’étudier la stabilité d’un probleme d’optimisation pa-
ramétrique, la dualité forte robuste pour un probleme convexe conique a données incer-
taines et de caractériser les solutions optimales robustes d’un probleme quadratique a
données incertaines. La stabilité assure le saut de dualité nul entre la valeur du probléme
paramétrique et son dual paramétrique. La dualité forte robuste quant a elle annule le saut

de dualité entre la valeur robuste et la valeur du dual ”optimiste”.

Nous avons commencé par rappeler les notions nécessaires a I’étude de ces problemes
d’optimisation. En utilisant des techniques de dualité et des conditions d’intériorité, nous
avons établi un résultat tres général de stabilité (Théoreme 2.1) dans les e.v.t pour un
probleme d’optimisation convexe paramétrique. Par le biais de la topologie induite, ce
résultat reste vrai en réduisant I’espace de travail (Théoreme 2.2). Ces résultats restent
vrais dans le cas des e.v.n avec la fonction objectif perturbée par une forme linéaire conti-
nue (Théoréme 2.3, Théoreme 2.4). En utilisant des criteres de fermetures, nous obte-
nons le Théoreme 2.5 dans les e.v.t.l.c, qui généralise un résultat de Bot obtenu dans les
e.v.t.H.l.c ([15]). Par un choix judicieux des espaces, nous avons pu établir les versions
duales de ces résultats de stabilité. Un cas particulier d’optimisation convexe paramétrique
est la minimisation du maximum de deux fonctions convexes. Ce probleme a fait 1’objet
d’étude par une approche de la conjugaison par tranches, en particulier un résultat de
stabilité a été énoncé dans [65, Théoreme 7.1]. En utilisant nos résultats de stabilité ci-

dessus, on obtient une généralisation de ce résultat (Théoreme 2.11).
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On considere un probleme d’optimisation convexe conique a données incertaines,
on introduit la notion de pire valeur et on rappelle la notion bien connue de la valeur ro-
buste. Nous donnons une condition nécessaire et suffisante pour obtenir 1’égalité entre la
valeur robuste et la pire valeur, avec exactitude de la pire valeur (Corollaire 3.1). Nous
avons ensuite rappelé la notion de dual “optimiste” et nous avons remarqué que sa valeur
est toujours inférieure a la pire valeur. On établit d’une part que si la propriété de dualité
forte robuste est vérifiée alors on a 1’égalité entre la valeur robuste et la pire valeur (Propo-
sition 3.5), avec exactitude de la pire valeur. D’autre part, on montre que si la pire valeur
est égale a la valeur robuste, avec exactitude de la pire valeur, on a la propriété de dualité
forte robuste moyennant une hypothese (Théoreme 3.2). Nous avons ensuite établi la dua-
lité forte stable robuste (Corollaire 3.3). Notons que Jeyakumar et collaborateurs ([43])
ont établi la propriété de dualité forte pour ce probleme avec des données continues, que
nous avons réussi a affaiblir par un critere de fermeture des épigraphes.

L’ étude des problemes d’optimisation quadratique que nous avons développée dans
ce mémoire est une généralisation des travaux de Jeyakumar et Li ([37]). Ces auteurs ont
obtenu dans un cas particulier, une caractérisation des solutions robustes de ces problemes
via des versions robustes du S-lemma et du théoreme des alternatives. Nous avons établi
des versions robustes plus générales du S-lemma (Corollaire 4.1) et du théoreme des al-
ternatives (Théoreme 4.1). Nous avons, a partir de ces résultats, donné une caractérisation
des solutions optimales robustes du probleme quadratique homogene a données incer-
taines, qui généralise celles de Jeyakumar et Li ([37]). Par une homogénéisation, dans le
cas non homogene nous avons obtenu également une caractérisation des solutions opti-

males robustes du probleme quadratique non homogene a données incertaines.

Perspectives

L’ étude des problemes paramétriques ouvre la voie a une perspective qui est d’étudier les

problemes paramétriques sous incertitudes. Il s’agit des problemes de la forme :
inf F,(x,y), sl.cxelX, (Py)

ou X et Y sont deux espaces vectoriels topologiques, y fixé dans Y, U est un ensemble
incertain non vide et pour tout # € U, la fonction F, : X X Y — R est convexe.

On associe au probleme (P,) sa contrepartie robuste,

infsup F,(x,y), slcxeX (RPy)
uelU
et son dual optimiste
sup{(y*,y) — F,(0,y")}, slcueUy eY". (ODP,)
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La dualité forte robuste que nous avons établi pour les problemes convexes coniques a
données incertaines est intéressante du faite que le dual optimiste nous donne une infor-
mation sur la valeur robuste du probleme initial. Par contre la dualité forte robuste ne nous
donne aucune information sur les solutions optimales robustes. Il serait donc intéressant
d’établir une relation donnant une information sur les solutions optimales robustes. En
perspective, la question de la dualité totale robuste du probleme incertain, c’est-a-dire la
situation garantissant 1’égalité entre la valeur du dual optimiste et la valeur robuste avec
les deux valeurs atteintes reste posée.

Il est bien connu que le rayon de stabilité est un indicateur de la robustesse. Ainsi une
perspective intéressante serait 1’approche du probleme quadratique incertain par la notion

de rayon de stabilité.
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