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incertaines 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Valeur robuste et pire valeur . . . . . . . . . . . . . . . . . . . . . . . . 62
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Résumé

Dans ce mémoire, nous rappelons certaines notions de l’analyse convexe utiles à l’étude

des problèmes d’optimisation. Pour un problème paramétrique donné, nous déterminons

son dual paramétrique à l’aide de la perturbation horizontale de la fonction objectif. Nous

établissons des conditions de qualification d’intériorité garantissant la dualité forte entre

les deux problèmes. Nous donnons ensuite la version duale des résultats obtenus. Ces

résultats de dualité sont ensuite appliqués au cas particulier de la minimisation du maxi-

mum de deux fonctions convexes.

Dans la pratique, les données d’un problème d’optimisation sont soumises à des erreurs de

modélisation ou de mesure, ce qui nous amène à considérer un problème d’optimisation

convexe conique à données incertaines. Par une approche épigraphique, nous établissons

la dualité forte robuste pour ce problème. Nous terminons ce mémoire par l’étude d’un

problème d’optimisation quadratique, à données incertaines dans un ensemble borné.

Nous caractérisons l’ensemble des solutions optimales robustes dans les cas homogène

et non homogène sous certaines conditions.
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Abstract

In this thesis, we recall some notions of convex analysis which are helpful to the study

of optimization problems. For a given parametric problem, we determine its parametric

dual using the horizontal disturbance of the objective function. We establish qualification

conditions guaranteeing the strong duality between the two problems. We then give the

dual version of the results. These duality results are then applied to the specific case of

minimization the maximum of two convex functions. In practice, data of optimization

problem are submitted to modeling or measurement errors, which leads us to consider

an uncertain conical convex optimization problem. By the means of an epigraphic ap-

proach, we establish robust strong duality for this problem. We end this thesis by stu-

dying an uncertain quadratic optimization problem where the uncertain data belong in

a bounded set. We characterize the set of robust optimal solutions in homogeneous and

non-homogeneous cases under some conditions.
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Introduction générale

Les problèmes d’optimisation ont occupé certains chercheurs au cours des années. Les

chercheurs grecs ont considéré divers problèmes d’extrema liés aux figures géométriques.

Au IVe siècle avant l’ère chrétienne, Euclide, dans ses ”Éléments”, a montré que le pa-

rallélogramme de plus grande surface incluse dans un triangle a pour sommets un des

sommets du triangle et les trois milieux des côtés. Après une longue période de la-

tence, l’étude des problèmes d’optimisation a pris un nouvel envol au XVIIe siècle avec

l’avènement du calcul différentiel. C’est en ce moment que Fermat dans le cas des po-

lynômes, énonça ce qu’on appelle la règle de Fermat. Cette règle stipule que la dérivée

d’une fonction est nulle au point où elle atteint son minimum. Il revient à Newton et

Leibniz d’avoir forgé les outils de base du calcul différentiel, qui permettent une étude

systématique de nombreux problèmes d’optimisation. Jean Bernoulli proposa à la com-

munauté mathématique le problème qui consiste à déterminer la courbe permettant le

transfert, d’un point à un autre, d’une masse ponctuelle en un temps minimum. L’Hôpital,

Leibniz et Newton proposèrent une solution au dit problème. La solution fut publiée dans

le numéro de mai 1697 de la revue Acta Eruditorum. Euler, puis Lagrange étudièrent de

façon systématique les problèmes d’optimisation de courbe. Le domaine fut appelé cal-

cul des variations en raison de la méthode des variations introduite par Lagrange, et se

développa considérablement au XIXe siècle, en liaison avec la mécanique. Enfin, le XXe

siècle a vu le développement des méthodes d’optimisation grâce à l’introduction de la

dualité et de l’analyse convexe. En effet, la dualité permet de regarder un problème d’op-

timisation sous deux angles : le problème primal et le problème dual. L’utilité de cette

notion de dualité réside d’une part du faite que la valeur du dual est une minorante de

celle du primal (dualité faible) et dans certains cas on a l’égalité entre les deux valeurs

avec exactitude (c’est-à-dire la valeur est atteinte) de celle du dual (dualité forte). D’autre

xi



0.1. ÉTAT DE L’ART

part, il peut exister un passage de l’ensemble des solutions optimales du problème dual à

celui du primal et vice versa. L’analyse convexe quant à elle permet entre autre d’assurer

l’existence et / ou l’unicité de solutions optimales. Dans de nombreux cas, la convexité

permet de caractériser les solutions optimales grâce aux équations d’Euler et de Karush-

Kuhn-Tucker (KKT). C’est également au XXe siècle que les applications techniques ont

connu un développement fulgurant, notamment dans les domaines des sciences sociales,

de la finance, de la gestion et de l’économie.

Dans la pratique, les données d’un problème d’optimisation sont souvent soumises à des

erreurs de modélisation ou de mesure et pour y remédier, A. L. Soyster [61] à introduit la

notion de solution robuste (le pire des cas). Cette approche d’optimisation robuste a été

valorisée par A. Ben-Tal et collaborateurs [9] au début du XXIe siècle.

L’objectif de cette thèse est d’établir :

– la dualité forte pour un problème d’optimisation paramétrique sous de nouvelles condi-

tions de qualification ;

– la dualité forte robuste d’un problème d’optimisation convexe conique à données incer-

taines ;

– une caractérisation des solutions optimales robustes pour des problèmes quadratiques

(homogène et non homogène) à données incertaines.

La thèse est organisée en quatre (4) chapitres.

0.1 État de l’art

Dans ce chapitre, nous rappelons les principaux concepts et résultats d’analyse convexe

utiles à l’étude des problèmes d’optimisation. L’étude des problèmes coniques requiert

certaines propriétés relatives aux cônes qui y sont également développées. Nous rappelons

le S-lemma et le théorème des alternatives, lesquels résultats sont utiles à l’étude des

problèmes d’optimisation quadratique.

0.2 Dualité pour des problèmes paramétriques

Ce chapitre est dédié à une étude abstraite de la théorie de la dualité en optimisation

convexe dans les espaces vectoriels topologiques. On considère le problème paramétrique

(primal) suivant :

minimiser F(x, y) , s.l.c x ∈ X, (Py)

où s.l.c signifie ”sous les contraintes”, X et Y sont deux espaces vectoriels topologiques,

X∗ et Y∗ leurs duaux topologiques respectifs, F : X × Y −→ R une fonction convexe et le

xii



0.3. DUALITÉ ROBUSTE POUR DES PROBLÈMES D’OPTIMISATION CONVEXE CONIQUE À DONNÉES
INCERTAINES

paramètre y est fixé dans Y .

On associe à la fonction F, la fonction dite de perturbation (horizontale) Gy : X×Y −→ R

définie par

Gy(x, u) = F(x, y + u), ∀(x, u) ∈ X × Y. (1)

Ceci permet d’obtenir le problème dual paramétrique associé au problème (Py) donné par

maximiser −G∗y(0X∗ , y∗), s.l.c y∗ ∈ Y∗. (Dy)

Notons que pour y fixé dans Y , la valeur de (Dy) est inférieure ou égale à celle de (Py) (dua-

lité faible) et le gap entre les deux valeurs est appelé saut de dualité. De nombreux auteurs

ont proposé des conditions pour annuler le saut de dualité (dualité forte), en particulier

des conditions de point-intérieur à partir de l’intérieur classique ou d’autres notions de

l’intérieur tels que : le ”core” ([55]), le ”intrinsic core” ([34]) et l’intérieur quasi-relative

([19]). On retrouve dans les ouvrages de Zălinescu ([69]) et de Boţ ([15]) des conditions

de qualifications réalisant la dualité forte de problème non paramétrique en faisant inter-

venir des projections.

Nous donnons des conditions de qualifications de type intérieur et fermeture garantissant

des résultats de dualité forte du problème paramétrique. Nous donnons aussi les versions

duales de nos résultats de dualité forte ([5]). Nous appliquons ensuite ces propriétés de

dualité forte à la minimisation du maximum de deux fonctions convexes. Dans ce cas

nous généralisons des résultats de dualité forte obtenus par Traoré-Volle ([65]).

0.3 Dualité robuste pour des problèmes d’optimisation
convexe conique à données incertaines

Nous étudions dans ce chapitre un problème d’optimisation convexe conique incertain

défini par

inf
x

f (x) s.l.c gu(x) ∈ −S , (P)

où U est un ensemble incertain, X et Y sont deux espaces vectoriels topologiques Haus-

dorff localement convexes, f : X −→ R ∪ {+∞} est une fonction convexe semi-continue

inférieurement et propre, S ⊂ Y est un cône convexe fermé non vide, pour chaque u ∈ U,

la fonction gu : dom(gu) ⊂ X −→ Y est soit S -convexe fermée par épigraphique ou S -

convexe fermée par niveaux.

Au problème (P) est associé sa contrepartie robuste ([8], [9], [11]) définie par

inf
x

f (x) s.l.c gu(x) ∈ −S , ∀u ∈ U. (RP)

xiii



0.3. DUALITÉ ROBUSTE POUR DES PROBLÈMES D’OPTIMISATION CONVEXE CONIQUE À DONNÉES
INCERTAINES

Le dual ”optimiste” du problème (P) ([7], [16], [36], [43]) est défini également par

sup
(u,λ)

inf
x∈X
{ f (x) + λgu(x)} s.l.c (u, λ) ∈ U × S +. (ODP)

Notons que le problème (P) a été étudié par Jeyakumar et collaborateurs ([43]) avec les

fonctions gu définies et continues sur l’espace X, ce qui est une condition plus forte que

la fermeture des tranches ou des épigraphes.

La dualité forte de ce problème dans le cas où il n’y a pas d’incertitudes, a été étudiée par

Boţ ([15]) et par Dinh, Vallet et Volle ([29]). L’apparition de l’incertitude au niveau des

problèmes fait intervenir une notion de solution appelée solution robuste, laquelle notion

a été introduite par Soyster ([61]). Ces solutions robustes sont les solutions du problème

(RP). La valeur de la contrepartie robuste (RP) notée inf(RP), est appelée valeur robuste

du problème incertain (P).

La dualité forte robuste est vérifiée s’il y a égalité entre la valeur robuste et la valeur du

dual ”optimiste” avec exactitude de la valeur du dual ”optimiste”. La dualité forte robuste

est vérifiée si on a donc l’égalité inf(RP) = max(ODP).

La dualité forte robuste a été établie par Li, Jeyakumar, Lee dans [43, Corollaire 3.1] dans

le cas où les fonctions gu : X −→ Y sont S -convexes par épigraphe et continues sous la

condition

epi f ∗ +
⋃

u∈U,λ∈S +

epi(λgu)∗ est convexe ω∗-fermé, (2)

où S + est le cône polaire positif de S .

Ces auteurs utilisent l’approche de fonction de perturbation pour aboutir à leur résultat.

Nous introduisons le problème suivant

sup
u

inf
x
{ f (x) : gu(x) ∈ −S } s.l.c u ∈ U (Q)

et nous appelons sa valeur, la pire valeur du problème (P).

On observe que la pire valeur est une minorante de la valeur robuste et que l’inégalité entre

ces deux valeurs peut être stricte. L’objectif de ce chapitre est de donner une condition

nécessaire et suffisante permettant d’obtenir l’égalité entre la valeur robuste et la pire

valeur, avec exactitude de la pire valeur (c’est-à-dire la pire valeur est atteinte). On déduit

de cette propriété une condition suffisante permettant d’obtenir la propriété de dualité forte

robuste et on compare ce dernier résultat à celui de Jeyakumar, Li et Lee. En établissant

l’égalité entre la valeur robuste et la pire valeur, nous établissons la dualité forte robuste

du problème (P) ([6]).
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0.4. OPTIMISATION QUADRATIQUE À DONNÉES INCERTAINES

0.4 Optimisation quadratique à données incertaines

Ce dernier chapitre aborde l’étude des problèmes quadratiques à données incertaines de

la forme
minimiser 1

2 xT Ax + aT x

s.l.c

 1
2 xT Bx + bT x + β ≤ 0
Hx = d,

(UNH)

où A ∈ Sn, a, b ∈ Rn, β ∈ R, d ∈ Rm, H est une matrice d’ordre m × n, n,m ∈ N∗ et

(B, b) ∈ Sn × Rn est incertain et appartient à un ensemble incertain V = V0 × V1 avec

V0 = {B0 + µB1 : µ ∈ [µ0, µ1]},V1 = {b0 + δb1 : δ ∈ [δ0, δ1]} où µ0, µ1 ∈ R : µ0 ≤ µ1,

δ0, δ1 ∈ R : δ0 ≤ δ1, B0, B1 ∈ S
n et b0, b1 ∈ R

n.

Ce type de problème apparaı̂t dans plusieurs domaines d’applications tels que la commu-

nication et le traitement du signal ([46], [59]).

Jeyakumar et collaborateurs ([37]) ont étudié ce problème dans le cas où H := 0, d = 0 et

β > 0. Ils utilisent une version robuste du S-lemma et du théorème des alternatives pour

établir une caractérisation des solutions optimales robustes. Nous établissons une version

robuste plus générale du S-lemma et du théorème des alternatives pour caractériser les

solutions optimales robustes de (UNH).

xv



CHAPITRE 1

État de l’art

1.1 Quelques notions sur l’analyse convexe

Nous donnons dans cette partie quelques concepts essentiels sur l’analyse convexe utiles

pour l’étude des problèmes d’optimisation convexes.

1.1.1 Ensemble convexe

Considérons un R-espace vectoriel X. Afin d’introduire la définition d’ensemble convexe

nous abordons la notion d’ensemble affine.

1.1.1.1 Ensemble affine

Soient x et y distincts dans X, l’ensemble des points de la forme

(1 − λ)x + λy, λ ∈ R,

est appelé ”ligne” passant par x et y.

Définition 1.1. Un sous-ensemble M de X est appelé ensemble affine si

(1 − λ)x + λy ∈ M pour tout x, y ∈ M et λ ∈ R.

Un ensemble affine M est donc un ensemble qui contient la ”ligne” passant par deux

points quelconques de M.

Exemple 1.1. L’ensemble vide ∅ par convention et l’espace X sont des ensembles affines.
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1.1. QUELQUES NOTIONS SUR L’ANALYSE CONVEXE

Définition 1.2. Pour un sous-ensemble M ⊂ X, on définit le plus petit ensemble affine

contenant M par

aff M :=
⋂
{A ⊂ X | M ⊂ A, A affine}.

aff M est appelé enveloppe affine de M et on vérifie que (voir [4, Theorem 1.13])

aff M =

 n∑
i=1

λixi | n ∈ N∗, λi ∈ R, xi ∈ M, i = 1, . . . , n,
n∑

i=1

λi = 1

 .
Remarque 1.1. Un sous-ensemble M affine contenant l’origine de X est un sous-espace

vectoriel.

Nous obtenons un lien entre un ensemble affine et un sous-espace vectoriel.

Proposition 1.1 ([66]). Un sous-ensemble non vide M de X est un ensemble affine si et

seulement s’il existe un sous-espace vectoriel L de X et a ∈ M tel que M = {a} + L.

1.1.1.2 Intérieur algébrique

Définition 1.3. Soit M un sous-espace vectoriel de X et soit A un sous-ensemble de X,

l’intérieur algébrique noté aintM A de A par rapport à M est :

aintM A := {a ∈ X | ∀x ∈ M, ∃δ > 0 : ∀λ ∈ [0, δ], a + λx ∈ A}.

Remarque 1.2. On peut distinguer deux cas importants :

(i) M = X, dans ce cas l’intérieur algébrique de A par rapport à M est noté Ai et est appelé

tout simplement intérieur algébrique de A ;

(ii) M = aff(A − A), dans ce cas l’intérieur algébrique de A par rapport à M est noté Ari

et est appelé intérieur algébrique relatif de A.

On obtient donc l’expression suivante de l’intérieur algébrique relatif :

Ari = {a ∈ X | ∀x ∈ aff(A), ∃δ > 0 : ∀λ ∈ [0, δ], (1 − λ)a + λx ∈ A}.

1.1.1.3 Ensemble convexe

Définition 1.4. Un sous-ensemble C de X est dit convexe si pour tous x, y ∈ C et pour tout

λ ∈ [0, 1], λx + (1 − λ)y ∈ C ; c’est-à-dire que C contient tout segment entre deux points

de C.

Exemple 1.2.

(i) Par convention, l’ensemble vide ∅ est convexe.
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1.1. QUELQUES NOTIONS SUR L’ANALYSE CONVEXE

(ii) Soient x, y ∈ R, l’intervalle ouvert

]x, y[= {λx + (1 − λ)y : 0 < λ < 1}

est un ensemble convexe de R.

Remarque 1.3. La notion d’ensemble convexe est donc plus générale que celle d’en-

semble affine en ce sens que tout ensemble affine est convexe.

Définition 1.5. Une combinaison convexe des éléments x1, x2, . . . , xn ∈ X est un élément

x de la forme

x = λ1x1 + λ2x2 + . . . + λnxn,

avec λ1 ≥ 0, . . . , λn ≥ 0 et
n∑

i=1

λi = 1.

On en déduit une autre caractérisation des ensembles convexes.

Proposition 1.2 ([66]). Un sous-ensemble C ⊂ X est convexe si et seulement si pour tous

λ1 ≥ 0, . . . , λn ≥ 0 tels que
n∑

i=1

λi = 1 et pour tous c1, c2, . . . , cn ∈ C, on a

n∑
i=1

λici ∈ C.

Certaines opérations sur les ensembles convexes préservent la convexité.

Proposition 1.3 ([66]). Les opérations suivantes préservent la convexité :

(i) l’intersection d’une famille quelconque d’ensembles convexes est convexe,

(ii) si C1,C2 ⊂ X sont deux sous-ensembles convexes alors la somme de Minkowski

notée et définie par

C1 + C2 = {x + y : x ∈ C1, y ∈ C2}

et le produit de C1 par un scalaire α noté et défini par

αC1 = {αx : x ∈ C1}, α ∈ R

sont convexes,

(iii) le produit cartésien de deux sous-ensembles convexes C1,C2 ⊂ X est un sous-

ensemble C1 ×C2 convexe de X × Y,

(iv) l’image d’un convexe C ⊂ X par une application affine f : X −→ Y, (où Y est un R

espace vectoriel) est un convexe.
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1.1. QUELQUES NOTIONS SUR L’ANALYSE CONVEXE

Proposition 1.4. Si C ⊂ X est un ensemble convexe et λ1 ≥ 0, λ2 ≥ 0, alors

(λ1 + λ2)C = λ1C + λ2C.

Preuve.

Le résultat est évident si λ1 = 0 et λ2 = 0.

Si au moins un des λ1, λ2 est non nul, on a pour tout c1 ∈ C, c2 ∈ C,

λ1

λ1 + λ2
c1 +

λ2

λ1 + λ2
c2 = c ∈ C.

Il en résulte que

(λ1 + λ2)
(

λ1

λ1 + λ2
c1 +

λ2

λ1 + λ2
c2

)
= λ1c1 + λ2c2 = (λ1 + λ2)c ∈ (λ1 + λ2)C,

donc λ1C + λ2C ⊂ (λ1 + λ2)C.

Inversement, pour tout c ∈ C, comme

(λ1 + λ2)c = λ1c + λ2c ∈ λ1C + λ2C,

alors

(λ1 + λ2)C ⊂ λ1C + λ2C.

On conclut que

(λ1 + λ2)C = λ1C + λ2C.

�

Remarque 1.4. Pour tout sous-ensemble de X, il existe un plus petit ensemble convexe le

contenant.

Définition 1.6. Soit S ⊂ X, l’intersection de tous les sous-ensembles convexes contenant

S est appelé l’enveloppe convexe de S . C’est le plus petit ensemble convexe contenant S .

On le note co S ou conv S et on a :

co S :=
⋂{

A : S ⊂ A, A convexe
}
.

Si de plus, X est un espace topologique, on note co S l’enveloppe convexe fermée de S .

Proposition 1.5 ([4]). Soit S ⊂ X, l’enveloppe convexe co S est l’ensemble de toutes les

combinaisons convexes des éléments de S .

co S =

 m∑
i=1

λixi : xi ∈ S , λi ≥ 0, i = 1, . . . ,m, m ∈ N,
m∑

i=1

λi = 1

 .
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1.1. QUELQUES NOTIONS SUR L’ANALYSE CONVEXE

Corollaire 1.1. L’enveloppe convexe de m points de X, {x1, x2, . . . , xm} ⊂ X est

co(x1, x2, . . . , xm) =

 m∑
i=1

λixi : λi ≥ 0, i = 1, . . . ,m,
m∑

i=1

λi = 1

 .
Définition 1.7. L’enveloppe convexe de m+1 points linéairement indépendants y0, y1, . . . , ym

est appelé simplexe de dimension m et de sommets y0, y1, . . . , ym.

Remarque 1.5. Le point λ0y0 + λ1y1 + . . . + λmym avec λ0 = λ1 = . . . = λm =
1

1 + m
est

appelé iso-barycentre du simplexe.

1.1.1.4 Cône convexe

Définition 1.8. Un sous-ensemble K de X est un cône s’il est invariant pour la multipli-

cation par un scalaire strictement positif, c’est-à-dire

∀x ∈ K, ∀λ > 0, λx ∈ K.

Remarque 1.6. Un cône a plusieurs propriétés, entre autres :

(i) l’origine 0 peut ou ne pas appartenir au cône K,

(ii) dans le cas où le cône ne contient pas de droite, on parle de cône ”pointu”,

(iii) l’ensemble {a}+K, a ∈ X appelé translation du cône K par a est un cône de sommet

a.

Exemple 1.3. Parmi les exemples de cônes convexes on peut citer :

(i) l’orthant positif de Rn

Rn
+ = {x = (x1, x2, . . . , xn) ∈ Rn : x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0},

(ii) le cône des matrices symétriques semi-définies positives

Sn
+ = {A ∈ Sn : xT Ax ≥ 0 ∀x ∈ Rn, n ∈ N∗} dans l’ensemble des matrices

symétriques d’ordre n,

(iii) le cône de Lorentz ou ”ice cream cone”,

Ln =
{
x = (x1, x2, . . . , xn) ∈ Rn :

√
x2

1 + . . . , x2
n−1 ≤ xn, n ∈ N∗

}
,

(iv) tout sous-espace vectoriel de X.

Proposition 1.6 ([66]). Un sous-ensemble C ⊂ X est un cône convexe si et seulement s’il

vérifie les deux assertions suivantes :

(i) ∀x ∈ C,∀λ > 0, λx ∈ C,

(ii) ∀x1, x2 ∈ C, x1 + x2 ∈ C.
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Définition 1.9. Un point de la forme λ1x1+λ2x2+. . .+λnxn avec λ1 > 0, λ2 > 0, . . . , λn > 0

est appelé combinaison conique (ou combinaison linéaire strictement positive) des points

x1, x2, . . . , xn.

Corollaire 1.2. Un sous-ensemble C de X est un cône convexe si et seulement si il contient

toutes les combinaisons coniques de ses éléments.

Remarque 1.7. L’intersection d’une famille quelconque de cônes convexes est un cône

convexe.

Corollaire 1.3. Soit C un sous-ensemble de X, le plus petit cône convexe contenant C est

appelé enveloppe conique convexe noté cone(C) et est obtenu par :

cone(C) = {λ1x1 + λ2x2 + . . . + λnxn : n ∈ N∗, xi ∈ C, λi > 0, i = 1, . . . , n}.

Si l’ensemble C est de plus convexe, on obtient une forme plus simple de l’enveloppe

conique.

Corollaire 1.4. Soit C un sous-ensemble convexe de X alors

cone(C) = {λx : x ∈ C, λ > 0}

1.1.1.5 Cône propre et inégalité généralisée

Dans cette sous section, on suppose que X est un R-espace vectoriel topologique.

Définition 1.10. Un cône K ⊂ X est appelé cône propre s’il vérifie les propriétés sui-

vantes :

(i) K est convexe,

(ii) K est fermé,

(iii) K est solide c’est-à-dire que l’intérieur de K est non vide,

(iv) K est pointu c’est-à-dire que K ne contient pas de droite autrement dit :

x ∈ K et −x ∈ K =⇒ x = 0.

Un cône propre K défini un ordre partiel avec l’inégalité généralisée qu’il engendre sur

X. Au cône propre K on associe l’inégalité généralisée notée ≤K et définie par :

x ≤K y⇐⇒ y − x ∈ K,

appelée ordre partiel.

On définit de manière analogue l’ordre partiel strict notée <K par

x <K y⇐⇒ y − x ∈ intK,

où intK désigne l’intérieure topologique de K.
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Remarque 1.8. Si X = R et K = R+, l’ordre partiel ≤K est l’ordre usuel ≤ sur R, et l’ordre

partiel strict <K est l’ordre strict usuel < sur R.

Exemple 1.4. L’orthant positif K = Rn
+ est un cône propre. L’inégalité généralisée as-

sociée ≤Rn
+

est l’inégalité composante par composante entres vecteurs :

∀x, y ∈ Rn x ≤Rn
+

y⇐⇒ xi ≤ yi, i = 1, . . . , n.

Exemple 1.5. Le cône des matrices symétriques semi-définies positives d’ordre n, Sn
+

est un cône propre dans l’ensemble des matrices symétriques d’ordre n, Sn. L’inégalité

généralisée associée ≤Sn
+

est l’inégalité matricielle définie par :

∀A, B ∈ Sn, A ≤Sn
+

B⇐⇒ B−A est semi-définie positive c’est-à-dire xT (B−A)x ≥ 0 ∀x ∈ Rn,

où xT est la transposée de x.

Propriété 1.1 ([21]). Pour tout cône propre K de X, l’inégalité généralisée ≤K satisfait

les propriétés suivantes :

(i) ∀x, y, u, v ∈ X, si x ≤K y et u ≤K v, alors x + u ≤K y + v,

(ii) ∀x, y ∈ X et α ≥ 0, si x ≤K y, alors αx ≤K αy,

(iii) L’inégalité généralisée ≤K est :

• réflexive c’est-à-dire

∀x ∈ X, x ≤K x,

• antisymétrique c’est-à-dire

∀x, y ∈ X, si x ≤K y et y ≤K x, alors x = y,

• transitive c’est-à-dire

∀x, y, z ∈ X, si x ≤K y et y ≤K z alors x ≤K z.

L’inégalité généralisée stricte <K a aussi certaines propriétés intéressantes.

Propriété 1.2 ([21]). ∀x, y ∈ X,

(i) si x <K y alors x ≤K y,

(ii) ∀u, v ∈ X, si x <K y et u ≤K v alors x + u <K y + v,

(iii) si x <K y alors ∀α > 0, αx <K αy.
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Plusieurs propriétés liées à l’inégalité ordinaire ≤ sur R sont valables pour l’inégalité

généralisée ≤K . Cependant il existe certaines qui ne sont pas valables pour l’inégalité

généralisée. Plus spécifiquement l’inégalité généralisée n’est pas une relation d’ordre to-

tale, ce qui rend délicat la notion d’élément extremum.

Définition 1.11 ([21]). Soit S un sous-ensemble de X et K un cône propre de X.

Un élément x ∈ S est dit élément minimum (respectivement maximum) de S par rapport à

l’inégalité généralisée ≤K si pour tout y ∈ S , on a x ≤K y (respectivement y ≤K x).

Une définition équivalente est la suivante : Un élément x ∈ S est un élément minimum

(respectivement maximum) si

S ⊆ x + K (respectivement si − S ⊂ −x + K).

L’ensemble x + K est l’ensemble des éléments comparables avec x et plus ”grand” ou

égale à x par rapport à ≤K .

Propriété 1.3 ([21]). Si un ensemble a un minimum (respectivement un maximum) alors

il est unique.

Définition 1.12. Soit S un sous-ensemble de X et K un cône propre de X. On dit qu’un

élément x ∈ S est un élément minimal (respectivement maximal) de S par rapport à

l’inégalité généralisée ≤K si pour y ∈ S tel que y ≤K x (respectivement y ≥K x) alors y = x

(respectivement y = x).

On dit aussi qu’un élément x ∈ S est un élément minimal de S (par rapport à ≤K) si

({x} − K) ∩ S = {x}.

x − K est l’ensemble des éléments comparables à x et plus ”petit” ou égale à x.

Remarque 1.9. Si X = R et K = R+, l’ordre partiel ≤K devient l’ordre ordinaire ≤. Dans

ce cas les concepts d’élément minimum (maximum) et d’élément minimal (maximal)

coı̈ncident. Ces notions correspondent à la définition usuel d’élément minimum (maxi-

mum) d’un ensemble.

Nous aurons aussi besoin dans la suite de la notion de cône régulier.

Définition 1.13 ([39]). Un cône K ⊂ Rn est un cône régulier si K ∪ (−K) est un sous-

espace vectoriel de Rn.

Exemple 1.6. Le cône de premier ordre [3], K = S + R+d, où S est un sous-espace

vectoriel de Rn et d ∈ Rn, est un cône régulier. En particulier les sous-espaces vectoriels,

les rayons R+d (où d ∈ Rn) sont des cônes réguliers.
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1.1.2 Fonction convexe

Considérons X un R-espace vectoriel et f : X −→ R = [−∞,+∞] une fonction.

1.1.2.1 Définitions et propriétés

Définition 1.14. On appel domaine effectif ou tout simplement domaine de f le sous-

ensemble noté dom( f ) de X et défini par :

dom( f ) := {x ∈ X | f (x) < +∞}.

Définition 1.15. La fonction f est dite propre si

dom( f ) , ∅ et f (x) > −∞, ∀x ∈ X.

Définition 1.16. Le sous-ensemble de X × R noté epi f et défini par

epi f := {(x, r) ∈ X × R | f (x) ≤ r}

est appelé épigraphe de f .

Si l’inégalité est stricte on parle d’épigraphe strict noté epiS f et défini par

epiS f = {(x, r) ∈ X × R | f (x) < r}.

Définition 1.17. Soient X et Y deux ensembles, la projection sur X (respectivement sur

Y) est la fonction notée PX : X × Y −→ X (respectivement PY : X × Y −→ Y) et définie

par : PX(x, y) = x (respectivement PY(x, y) = y).

Remarque 1.10. Soient X et Y deux ensembles et A × B un sous-ensemble de l’espace

produit X × Y . La projection de A × B sur l’ensemble X (respectivement Y) est le sous-

ensemble A (respectivement B) et notée par PrX(A × B) (respectivement PrY(A × B)). On

a donc

PrX(A × B) = {x ∈ X : ∃ y ∈ B, (x, y) ∈ A × B} = A

et

PrY(A × B) = {y ∈ Y : ∃ x ∈ A, (x, y) ∈ A × B} = B.

Remarque 1.11. Par définition de la projection,

PrX(epi f ) := {x ∈ X | ∃r ∈ R : f (x) ≤ r}

et on a que dom( f ) = PrX(epi f ).
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Définition 1.18. Les ensembles

[ f ≤ r] := {x ∈ X | f (x) ≤ r}, r ∈ R

et

[ f ≥ r] := {x ∈ X | f (x) ≥ r}, r ∈ R

sont appelés respectivement tranche inférieure de f de niveau r et tranche supérieure

de f de niveau r. Si les inégalités sont strictes alors on parle respectivement de tranche

inférieure stricte et de tranche supérieure stricte.

Définition 1.19. La fonction f est dite convexe si

f ((1 − λ)x + λy) ≤ (1 − λ) f (x) + λ f (y), ∀x, y ∈ X, ∀λ ∈ [0, 1]

avec la convention

(+∞) + (−∞) = +∞, 0.(+∞) = +∞, 0.(−∞) = 0. (1.1)

L’inégalité de Jensen donne une définition plus générale de la convexité.

Propriété 1.4. f est convexe si et seulement si f vérifie l’inégalité de Jensen

f (λ1x1 + . . . + λnxn) ≤ λ1 f (x1) + . . . + λn f (xn),

∀λi ≥ 0, ∀xi ∈ X, i = 1, . . . , n, n ∈ N, n ≥ 2 : λ1 + . . . + λn = 1.

Preuve.

Si f est convexe on montre par récurrence que l’inégalité de Jensen est vérifiée.

Si l’inégalité de Jensen pour la fonction f est vérifiée, il est clair que la fonction est

convexe. �

On utilise aussi une propriété géométrique pour caractériser la convexité d’une fonction.

Propriété 1.5 ([4]). La fonction f est convexe si et seulement si son épigraphe epi f ou

son épigraphe strict epis f est convexe.

Définition 1.20. La fonction f est concave si (− f ) est convexe.

Exemple 1.7.

(i) La fonction f : R −→ R définie par

f (x) =


xp si x ≥ 0

+∞ si x < 0
avec 1 ≤ p < +∞

est convexe.
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(ii) La fonction f : R −→ R définie par

f (x) =


xp si x ≥ 0

−∞ si x < 0
avec 0 < p < 1

est concave.

(iii) La fonction f : R −→ R définie par

f (x) =


− ln x si x > 0

+∞ si x ≤ 0

est convexe.

Il existe d’autres caractérisations de la convexité des fonctions souvent liées à la nature

de l’espace X.

Proposition 1.7. La fonction f : X −→ R est convexe si et seulement si sa restriction sur

une ”ligne” quelconque est convexe c’est-à-dire que pour tout x ∈ X et y ∈ X, la fonction

ϕx,y : R −→ R définie par

ϕx,y(t) = f (x + ty), t ∈ R

est convexe.

Preuve.

Comme pour tout z ∈ X, ∃x, y ∈ X, t ∈ R tels que z = x + ty et de plus

ϕx,y(λt1 + (1 − λ)t2) = f (x + (λt1 + (1 − λ)t2)y)

= f (x + λx − λx + λt1y + (1 − λ)t2y)

= f (λ(x + t1y) + (1 − λ)(x + t2y)),

alors pour tout x, y ∈ X, ϕx,y est convexe si et seulement si f est convexe. �

Proposition 1.8. Soient (H, 〈., .〉) un espace de Hilbert et f : H −→ R une fonction

différentiable, alors les assertions suivantes sont équivalentes :

(i) f est convexe,

(ii) ∀x, y ∈ H, f (y) ≥ f (x) + 〈∇ f (x), y − x〉,

où ∇ f (x) est le gradient de f en x.

Remarque 1.12. La condition (ii) est appelée condition de premier ordre.
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Preuve.

Supposons que f est convexe. Soient x, y ∈ H, on a pour tout t ∈]0, 1[ :

f (x + t(y − x)) − f (x) ≤ t( f (y) − f (x)).

En multipliant les deux membres de l’inégalité par
1
t

et en passant à la limite pour t

tendant vers 0 on obtient :

f (y) ≥ f (x) + 〈∇ f (x), y − x〉,

d’où (ii).

Supposons (ii). Pour tout t ∈ [0, 1], (ii) est vraie pour x + t(y − x) et x, c’est-à-dire

f (x) ≥ f (x + t(y − x)) − t〈∇ f (x + t(y − x)), (y − x)〉,

(ii) est aussi vraie pour x + t(y − x) et y, c’est-à-dire

f (y) ≥ f (x + t(y − x)) + (1 − t)〈∇ f (x + t(y − x)), (y − x)〉.

En faisant la combinaison convexe des deux inégalités on obtient :

(1 − t) f (x) + t f (y) ≥ f (x + t(y − x)),

ce qui prouve la convexité de f . �

Proposition 1.9. Soit (H, 〈., .〉) un espace de Hilbert et f : H −→ R une fonction

différentiable, alors f est convexe si et seulement si ∇ f est un opérateur monotone c’est-

à-dire

∀x, y ∈ H × H, 〈∇ f (x) − ∇ f (y), x − y〉 ≥ 0. (1.2)

Preuve.

Soient x, y ∈ H, d’après la Proposition 1.8, si f est convexe, on a :

f (y) ≥ f (x) + 〈∇ f (x), y − x〉

et

f (x) ≥ f (y) + 〈∇ f (y), x − y〉,

en faisant la somme membre à membre on obtient

〈∇ f (x) − ∇ f (y), x − y〉 ≥ 0.

Réciproquement, pour x, y ∈ H tels que x , y, soit la fonction ϕ : [0, 1] −→ R définie

par :

ϕ(t) = (1 − t) f (x) + t f (y) − f (x + t(y − x)).
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ϕ est dérivable et on a :

∀t ∈ [0, 1], ϕ′(t) = − f (x) + f (y) − 〈∇ f (x + t(y − x)), y − x〉.

Par suite, ∀t1, t2 ∈ [0, 1] : t1 ≤ t2,

(t1 − t2)(ϕ′(t1) − ϕ′(t2)) = 〈∇ f (x + t2(y − x)) − ∇ f (x + t1(y − x)), (t1 − t2)(y − x)〉 ≤ 0,

(d’après (1.2) ). Par conséquent, ϕ est décroissante sur [0, 1]. De plus ϕ(0) = ϕ(1) = 0 et

d’après le théorème de Rolle, il existe a ∈]0, 1[ tel que ϕ′(a) = 0. En utilisant le tableau de

variation de ϕ, on obtient que ϕ ≥ 0 sur [0, 1], ce qui correspond à la convexité de f . �

Proposition 1.10. Soit (H, 〈., .〉) un espace de Hilbert et f : H −→ R une fonction deux

fois différentiable, alors les assertions suivantes sont équivalentes :

(i) f est convexe,

(ii) la matrice Hessienne ∇2 f de f est semi-définie positive sur H.

L’assertion (ii) est appelée condition de second ordre.

Preuve.

Si f est convexe alors d’après la Proposition (1.9)

〈∇ f (x) − ∇ f (y), x − y〉 ≥ 0,

en posant x − y = tω, t > 0 on obtient

〈∇ f (y + tω), ω〉 − 〈∇ f (y), tω〉 ≥ 0.

En divisant par t et en passant à la limite quand t −→ 0+, on a :

〈∇2 f (y)ω,ω〉 ≥ 0.

Réciproquement supposons que ∇2 f est semi-définie positive sur H. Soient x, y ∈ H,

d’après la formule de Taylor il existe θ ∈]0, 1] tel que

f (y) = f (x) + 〈∇ f (x), y − x〉 +
1
2
〈∇2 f (x + θ(y − x))(y − x), y − x〉.

Si ∇2 f est semi-définie positive, d’après la proposition 1.8, f est convexe.

�

Corollaire 1.5. Soit f : R −→ R une fonction deux fois dérivable sur un intervalle ouvert

]α, β[ de R, alors :

f est convexe sur ]α, β[ ⇐⇒ f ′′ ≥ 0 sur ]α, β[.

13
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Corollaire 1.6. Soit (H, 〈., .〉) un espace de Hilbert, soit A : H −→ H une application

linéaire continue auto-adjointe (c’est-à-dire vérifiant A∗ = A), soit b ∈ H et soit c ∈ R.

La fonction f : H −→ R, dite quadratique, définie par :

f (x) =
1
2
〈x, Ax〉 + 〈b, x〉 + c,

est convexe sur H si et seulement si 〈u, Au〉 ≥ 0, ∀u ∈ H.

En particulier si H = Rn, la fonction quadratique f : Rn −→ R définie par

f (x) =
1
2
〈x,Qx〉 + 〈a, x〉 + α,

avec a ∈ Rn, α ∈ R et Q une matrice symétrique de taille n × n, est convexe sur Rn si et

seulement si Q est semi-définie positive.

Nous décrivons certaines opérations qui conservent la convexité, ce qui permet de construire

de nouvelles fonctions convexes.

Proposition 1.11. Si fi : X −→ R, i = 1, . . . , n sont n fonctions convexes alors pour

αi ≥ 0, i = 1, . . . , n, la fonction

f = α1 f1 + α2 f2 + . . . + αn fn

est convexe. En particulier la somme de deux fonctions convexes est convexe.

Par définition, la preuve est immédiate.

Théorème 1.1. Si fi : X −→ R, i ∈ I , ∅, I ⊂ N est une famille de fonctions convexes

alors la fonction sup
i∈I

fi définie par

(sup
i∈I

fi)(x) = sup
i∈I

fi(x)

est convexe.

Preuve.

Puisque

epi(sup
i∈I

fi) =
⋂
i∈I

epi fi

est convexe, on déduit le résultat de la Propriété 1.5. �

Corollaire 1.7. Soient f1 et f2 : X −→ R deux fonctions convexes. La fonction

f : X −→ R définie par : f = sup{ f1, f2} notée souvent f1 ∨ f2 et définie par

f (x) = ( f1 ∨ f2)(x) = sup{ f1(x), f2(x)}, ∀x ∈ X

est convexe.
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Remarque 1.13. Notons que l’infimmum de deux fonctions convexes n’est pas forcement

convexe. En effet, les fonctions définies par

f1(x) = x + 1 et f2(x) = x2, ∀x ∈ R sont convexes sur R, mais

f (x) = ( f1 ∧ f2)(x) = inf{ f1(x), f2(x)} =


x2 si x ∈

[
1−
√

5
2 , 1+

√
5

2

]
x + 1 sinon,

n’est pas convexe sur R.

Étant donné E ⊂ R, on écrit min(E) (respectivement max(E)) au lieu de inf(E) (respecti-

vement sup(E)) lorsque l’infimum (respectivement le supremum) est atteint.

Définition 1.21. Soient X et Y deux espaces vectoriels et F : X × Y −→ R une fonction.

La fonction h : Y −→ R définie par

h(y) = inf
x∈X

F(x, y)

est appelée fonction marginale associée à F.

Théorème 1.2. Si F est convexe alors la fonction marginale h associée à F est convexe.

Preuve.

En effet, epish = PrYepisF est convexe si F est convexe. �

Définition 1.22. La fonction indicatrice d’un sous-ensemble A de X est la fonction

iA : X −→ R définie par :

iA(x) :=


0 si x ∈ A

+∞ si x ∈ X \ A.

Remarque 1.14. Il est clair que dom(iA) = A et epi iA = A × R+ et il en résulte que iA est

convexe si et seulement si A est convexe.

Si f est convexe, les tranches inférieures et inférieures strictes de f de niveau r respecti-

vement [ f ≤ r], [ f < r] sont convexes pour tout r ∈ R. Le sens inverse est généralement

faux.

Définition 1.23. Une fonction f est dite quasi-convexe si l’ensemble [ f ≤ r] est convexe,

pour tout r ∈ R.

Propriété 1.6. Une fonction f : X −→ R est quasi-convexe si et seulement si

∀x, y ∈ X, ∀λ ∈ [0, 1] : f (λx + (1 − λ)y) ≤ max{ f (x), f (y)}. (1.3)
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Preuve.

Supposons que f est quasi-convexe. Soient x, y ∈ X, on a

x ∈ [ f ≤ max{ f (x), f (y)}] et y ∈ [ f ≤ max{ f (x), f (y)}].

Alors, ∀λ ∈ [0, 1],

λx + (1 − λ)y ∈ [ f ≤ max{ f (x), f (y)}].

D’où (1.3). Inversement supposons que (1.3) est vérifiée. Soient r ∈ R, x et y ∈ [ f ≤ r],

on a

f (x) ≤ r et f (y) ≤ r. =⇒ max{ f (x), f (y)} ≤ r.

Comme (1.3) est vérifiée, alors

∀λ ∈ [0, 1] : f (λx + (1 − λ)y) ≤ max{ f (x), f (y)} ≤ r.

Par conséquent [ f ≤ r] est convexe. �

1.1.2.2 Généralisation de la convexité

De manière naturelle, on étant la notion de fonction convexe à valeurs dans un R espace

vectoriel muni d’un ordre partiel engendré par un cône propre. Soit Y un R-espace vec-

toriel et K un cône propre de Y . Rappelons que le cône propre K induit un ordre partiel

noté ≤K et qu’il défini un élément maximal et minimal de Y relativement à l’ordre partiel.

Notons ∞ l’élément maximal et −∞ l’élément minimal. Par analogie à R, on considère

l’espace Y ∪ {−∞,∞} et on note

Y• = Y ∪ {∞},

où −∞ < Y et∞ < Y tel que −∞ ≤K y, y ≤K ∞ pour tout y ∈ Y (comme ∀y ∈ Y,

y , ∞, y , −∞, alors on pose y <K ∞,−∞ <K y).

Ainsi, soit (Y,≤K) un R-espace vectoriel muni d’un ordre partiel ≤K associé à un cône

propre K de Y et soit une fonction h définie d’un R-espace vectoriel X vers Y• c’est-à-

dire h : X −→ Y•. On peut définir, d’une manière plus générale, la convexité d’une telle

fonction (se référer à [26], [41], [44], [45], [51], pour d’autres propriétés).

Définition 1.24. On dit que h : X −→ Y• est K-convexe si :

∀x, y ∈ X, ∀λ ∈ [0, 1], h(λx + (1 − λ)y) ≤K λh(x) + (1 − λ)h(y).

En outre, h est dit K-concave si la fonction −h : X −→ Y ∪ {−∞} est K-convexe.

Exemple 1.8. Toute application linéaire définie de X vers Y est K-convexe pour tout cône

propre K de Y .
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Tout comme dans le cas où Y = R, on peut définir le domaine et l’épigraphe de h.

Définition 1.25. Le domaine de h est défini par :

dom(h) = {x ∈ X : h(x) <K ∞}.

Son K-épigraphe, noté K-epi h est défini par :

K-epih = {(x, y) ∈ X × Y : h(x) ≤K y}.

Son K-niveau de niveau y ∈ Y est défini par :

[h ≤K y] = {x ∈ dom(h) : h(x) ∈ y − K}.

Définition 1.26. On dit que :

(i) h est K-convexe (respectivement K-fermée) par épigraphe si le K-epih est convexe

(respectivement fermé),

(ii) h est K-convexe (respectivement K-fermée) par niveaux si les K-niveaux de h sont

convexes (respectivement fermés),

(iii) h est K-convexe fermée par épigraphe si le K-epih est convexe et fermé,

(iv) h est K-convexe fermée par niveaux si les K-niveaux de h sont convexes et fermés.

Définition 1.27. Si f est une fonction définie de Y vers R alors on dit que f est

K-croissante si

x ≤K y =⇒ f (x) ≤ f (y) avec x, y ∈ Y.

On définit de manière analogue les fonctions K-décroissantes.

Exemple 1.9. On observe qu’une fonction linéaire ϕ : Y −→ R est K-croissante si et

seulement si ϕ(y) ≥ 0 pour tout y ∈ K.

En effet, soit une fonction ϕ : Y −→ R.

Supposons que ϕ(y) ≥ 0, ∀y ∈ K. Soient x, z ∈ Y : x ≤K z, c’est-à-dire z − x ∈ K ; donc

ϕ(z − x) ≥ 0 ce qui implique que ϕ(z) ≥ ϕ(x) par linéarité de ϕ. Inversement, soit y ∈ K.

On a 0 ≤K y, comme ϕ est croissante alors ϕ(y) ≥ ϕ(0) = 0.

On peut adapter les caractérisations de la convexité classique à cette généralisation de la

convexité.

Théorème 1.3 ([69]). Soit g : Y• −→ R une fonction convexe.

Si h : X −→ Y• est K-convexe et g est K-croissante alors g ◦ h est convexe.

En outre g ◦ h est convexe si h : X −→ Y ∪ {−∞} est K-concave et g K-décroissante. En

particulier, si A est une application linéaire de X vers Y alors g ◦ A est convexe.
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1.1.3 Fonctions quadratiques et convexité

Pour n ∈ N∗, nous considérons l’ensemble Sn des matrices symétriques et pour x ∈ Rn

nous désignons par xT la transposée de x. Pour A, B ∈ Sn, l’écriture A � B signifie que la

matrice A − B est semi-définie positive et l’écriture A � B signifie que la matrice A − B

est définie positive.

Énonçons le lemme suivant dû à Dine.

Lemme 1.1 ([28]). Pour tout, A1, A2 ∈ S
n, alors l’ensemble

{(xT A1x, xT A2x) : x ∈ Rn}

est convexe.

Notons que le théorème de Dine peut être vérifié s’il s’agit de plus de deux fonctions

quadratiques homogènes. Polyak [53] a étendu ce résultat à trois fonctions quadratiques

sous une condition supplémentaire.

Lemme 1.2 ([53]). Soient n ≥ 3, A1, A2, A3 ∈ S
n. Supposons qu’il existe γ1, γ2, γ3 ∈ R

tels que

γ1A1 + γ2A2 + γ3A3 � 0.

Alors, l’ensemble

{(xT A1x, xT A2x, xT A3x) : x ∈ Rn}

est convexe.

Il existe une formulation plus général du Lemme de Dine utilisant la notion de cône

régulier définie comme suit.

Lemme 1.3 ([39]). Soient A1, A2 ∈ S
n et K un cône régulier de Rn. Alors, l’ensemble

{(xT A1x, xT A2x) : x ∈ K}

est convexe.

1.1.4 Théorèmes des alternatives et S-lemma

Une notion très utile en optimisation quadratique est le S-lemma. Notons que le S-lemma

est une version quadratique du lemme de Farkas ([35]) pour un système de deux inégalités.

Lemme 1.4 ([52]). Soient f et g : Rn −→ R deux fonctions définies par

f (x) =
1
2

xT A1x + bT
1 x + c1 et g(x) =

1
2

xT A2x + bT
2 x + c2,

où A1, A2 ∈ S
n, b1, b2 ∈ R

n et c1, c2 ∈ R. Supposons qu’il existe x0 ∈ R
n tel que

g(x0) < 0. Alors les assertions suivantes sont équivalentes :
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(i) g(x) ≤ 0, x ∈ Rn =⇒ f (x) ≥ 0,

(ii) ∃λ ≥ 0 : ∀x ∈ Rn, f (x) + λg(x) ≥ 0.

Le théorème des alternatives de Yuan ([24]) suivant est une extension du théorème de

Gordan (pour les systèmes linéaires) aux systèmes quadratiques.

Lemme 1.5 ([24]). Soient A1 et A2 ∈ S
n. Alors exactement une seule des assertions sui-

vantes est vérifiée :

(i) ∃x ∈ Rn : 1
2 xT A1x < 0, 1

2 xT A2x < 0,

(ii) ∃(λ1, λ2) ∈ R2
+ \ {(0, 0)} : ∀x ∈ Rn, xT (λ1A1 + λ2A2)x ≥ 0.

Une généralisation du théorème des alternatives de Yuan [39, Théorème 3.2] a été obtenue

à partir du Lemme 1.3.

Théorème 1.4 ([39]). Soient f et g : Rn −→ R deux fonctions définies par

f (x) =
1
2

xT A1x et f (x) =
1
2

xT A2x, où A1, A2 ∈ S
n.

Soit K un cône régulier. Alors exactement une seule des assertions suivantes est vérifiée :

(i) ∃x ∈ K : f (x) < 0, g(x) < 0,

(ii) ∃(λ1, λ2) ∈ R2
+ \ {(0, 0)} : ∀x ∈ K, λ1 f (x) + λ2g(x) ≥ 0.

Dans [39, Corrolaire 3.1] A partir du Théorème 1.4, une forme générale du S-lemma est

déduit.

Corollaire 1.8 ([39]). Soient K un cône régulier, f et g : Rn −→ R deux fonctions définies

par

f (x) =
1
2

xT A1x et f (x) =
1
2

xT A2x, où A1, A2 ∈ S
n.

Supposons qu’il existe x0 ∈ K telle que g(x0) < 0. Alors, les assertions suivantes sont

équivalentes :

(i) g(x) ≤ 0, x ∈ K =⇒ f (x) ≥ 0,

(ii) ∃λ ≥ 0 : ∀x ∈ K, f (x) + λg(x) ≥ 0.

Le théorème des alternatives de Yuan est donné dans [39] dans le cas d’un système

d’inégalités impliquant deux fonctions quadratiques non homogènes.

Théorème 1.5 ([39]). Soient f et g : Rn −→ R deux fonctions définies par

f (x) =
1
2

xT A1x+bT
1 x+c1 et g(x) =

1
2

xT A2x+bT
2 x+c2, où A1, A2 ∈ S

n, b1, b2 ∈ R
n et c1, c2 ∈ R.

Soient a0 ∈ R
n et S 0 un sous-espace vectoriel de Rn. Alors exactement une seule des

assertions suivantes est vérifiée.
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(i) ∃x ∈ a0 + S 0 : f (x) < 0, g(x) < 0,

(ii) ∃(λ1, λ2) ∈ R2
+ \ {(0, 0)} : ∀x ∈ a0 + S 0, λ1 f (x) + λ2g(x) ≥ 0.

Remarque 1.15. Il a été observé dans [39] que le Théorème 1.5 peut ne pas être vérifié si

on remplace l’ensemble a0 + S 0 dans le (i) par un cône régulier.

Le Théorème 1.5 permet, dans [39] de donner une autre forme plus générale du S-lemma.

Corollaire 1.9. [39] Soient a0 ∈ R
n et S 0 un sous-espace vectoriel de Rn. Soient f et

g : Rn −→ R deux fonctions définies par

f (x) =
1
2

xT A1x+bT
1 x+c1 et g(x) =

1
2

xT A2x+bT
2 x+c2, où A1, A2 ∈ S

n, b1, b2 ∈ R
n et c1, c2 ∈ R.

Supposons qu’il existe x0 ∈ a0 + S 0 tel que g(x0) < 0. Alors les assertions suivantes sont

équivalentes :

(i) g(x) ≤ 0, x ∈ a0 + S 0 =⇒ f (x) ≥ 0,

(ii) ∃λ ≥ 0 : ∀x ∈ a0 + S 0, f (x) + λg(x) ≥ 0.

1.1.5 Topologie faible, topologie de Mackey

Soit X un R-espace vectoriel et X∗ son dual topologique (l’ensemble des formes linéaires

continues sur X).

Définition 1.28. La topologie faible notée σ(X, X∗) ou ω est la topologie la moins fine

(possédant le minimum d’ouverts) rendant continue toutes les applications x∗ ∈ X∗.

Proposition 1.12 ([22]). La topologie σ(X, X∗) est séparée.

Pour chaque x ∈ X, on considère l’application

ϕx : X∗ −→ R, f 7−→ ϕx( f ) = 〈 f , x〉 = f (x).

Définition 1.29. La topologie faible ∗ que l’on note σ(X∗, X) ou ω∗ est la topologie la

moins fine sur X∗ rendant continues toutes les applications (ϕx)x∈X.

Proposition 1.13 ([22]). La topologie faible ∗ σ(X∗, X) est séparée.

Définition 1.30. La topologie de Mackey définie sur X∗ notée τ(X∗, X) est la topologie la

plus fine (possédant le plus grand nombre d’ouverts) sur X∗ rendant continues toutes les

applications (ϕx)x∈X.
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1.1.6 Fonction semi-continue
1.1.6.1 Définition de la semi-continuité

Dans cette partie, X est un R-espace vectoriel topologique et f : X −→ R est une fonction.

Pour x ∈ X, notons par NX(x) l’ensemble des voisinages de x dans X.

Définition 1.31. La fonction f est semi-continue inférieurement en x ∈ X si

∀t ∈ R, f (x) > t, ∃V ∈ NX(x) | V ⊂ [ f ≥ t].

La fonction f est semi-continue supérieurement en x ∈ X si

∀t ∈ R, f (x) < t, ∃V ∈ NX(x) | V ⊂ [ f ≤ t].

Définition 1.32. La fonction f est semi-continue inférieurement si elle est semi-continue

inférieurement en tout point x ∈ X.

Propriété 1.7 ([4], [69]). f est semi-continue inférieurement (en abrégé s.c.i) si pour tout

r ∈ R, la tranche inférieure de f de niveau r, [ f ≤ r] est fermée dans X.

Remarque 1.16. En fait, on peut énoncer cette définition de la semi-continuité en prenant

r ∈ R puisque les ensembles

[ f ≤ +∞] = X et [ f ≤ −∞] =
⋂
r∈R

[ f ≤ r]

seront fermés.

Propriété 1.8 ([4], [69]). f est semi-continue supérieurement (en abrégé s.c.s) si pour

tout r ∈ R, la tranche inférieure stricte de niveau r de f , [ f < r] est ouverte dans X.

Remarque 1.17. f est s.c.s si et seulement si − f est s.c.i.

Exemple 1.10. Soit A un sous-ensemble de X, la fonction indicatrice iA est s.c.i (respec-

tivement s.c.s) si A est fermé (respectivement ouvert) et inversement.

Proposition 1.14 ([47]). f est s.c.i si et seulement si son épigraphe epi f est fermé dans

l’espace topologique X × R.

Corollaire 1.10. f est s.c.s si et seulement si son épigraphe strict epis f est ouvert dans

l’espace topologique produit X × R.
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1.1.6.2 Semi-continuité de fonction convexe

Dans cette sous-section, X est un R-espace vectoriel localement convexe séparé. On peut

caractériser les fonctions semi-continues inférieurement en utilisant la topologie faible.

Théorème 1.6 ([69]). Pour toute fonction f : X −→ R, les assertions suivantes sont

équivalentes :

(i) f est convexe et s.c.i,

(ii) f est convexe et ω-semi-continue inférieurement,

(iii) epi f est convexe et fermé,

(iv) epi f est convexe et ω-fermé.

ω-semi-continue inférieurement pour signifier que la continuité est prise par rapport à la

topologie faible et ω-fermé pour dire que l’ensemble est faiblement fermé.

Preuve.

Il suffit de remarquer qu’un ensemble convexe et fermé est convexe et ω-fermé et vice

versa. �

Proposition 1.15 ([47], [69]). Soit f : X −→ R une fonction convexe s.c.i. S’il existe

x0 ∈ X tel que f (x0) = −∞, alors f (x) = −∞ pour tout x ∈ dom( f ).

Théorème 1.7 ([69]). Si la fonction convexe f : X −→ R est bornée supérieurement sur

un voisinage d’un point de son domaine alors, f est continue sur l’intérieur de son do-

maine. De plus, si f n’est pas propre alors f est identiquement égale à −∞ sur l’intérieur

de son domaine.

Corollaire 1.11 ([69]). Soit f : X −→ R une fonction convexe. Alors f est continue sur

int(dom( f )) si et seulement si int(epi f ) est non vide dans X × R.

1.1.6.3 Inf-convolution

Soient f et g deux fonctions définies de X à valeurs dans R.

Définition 1.33. On appelle somme épigraphique ou inf-convolution de f et g la fonction

notée f�g : X −→ R et définie par :

( f�g)(x) = inf{ f (u) + g(v) : u + v = x}.
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Remarque 1.18.

(i) À l’aide d’un changement de variables, on a :

( f�g)(x) = inf{ f (x − u) + g(u) : u ∈ R}

= inf{ f (u) + g(x − u) : x ∈ R} = (g� f )(x).

(ii) Le domaine et l’épigraphe strict de la somme épigraphique sont donnés par

dom( f�g) = dom( f ) + dom(g),

epis( f�g) = epis f + episg.

Si au lieu de minimiser la somme de deux fonctions on minimise le maximum des deux

fonctions, on définit une autre fonction.

Définition 1.34. On appelle max-convolution ou conjugaison par tranche de f et g la

fonction notée f4g : X −→ R et définie par :

( f4g)(x) = inf{ f (u) ∨ g(v) : u + v = x}

= inf{max( f (u), g(v)) : u + v = x}.

Remarque 1.19. On vérifie que

dom( f4g) = dom( f ) + dom(g),

∀r ∈ R, [ f4g < r] = [ f < r] + [g < r].

La propriété suivante donne un résultat sur la convexité de l’inf-convolution et du max-

convolution.

Propriété 1.9 ([69]). Si les fonctions f , g sont convexes et propres alors :

(i) f�g et f4g sont convexes,

(ii) inf f�g = inf f + inf g,

(iii) inf f4g = inf f ∨ inf g.

Proposition 1.16 ([47]). Si f est s.c.s, alors f�g est s.c.s pour toute fonction g : X −→ R.

Nous rappelons la notion d’inf-compacité utile en optimisation.

Définition 1.35. On dit que f : X −→ R est inf-compacte si pour tout r ∈ R, la tranche

inférieure de f de niveau r est compacte.
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Remarque 1.20. Si X est séparé, les compactes sont fermés et donc toute fonction définie

de X à valeurs dans R, inf-compacte est s.c.i.

Propriété 1.10 ([47]). Les fonctions inf-compactes vérifient les propriétés suivantes :

(i) une fonction inf-compacte admet un minimum. De plus, si elle ne prend pas la

valeur −∞, alors elle est bornée inférieurement,

(ii) toute fonction s.c.i minorée par une fonction inf-compacte est inf-compacte,

(iii) si f et g sont deux fonctions à valeurs dans ] −∞,+∞], l’une inf-compacte, l’autre

s.c.i et bornée inférieurement alors f + g est inf-compacte,

(iv) l’enveloppe supérieure d’une famille quelconque (respectivement l’enveloppe inférieure

d’une famille finie) de fonctions inf-compactes est inf-compacte.

Le résultat suivant assure la semi-continuité inférieure d’une fonction marginale.

Lemme 1.6 ([47]). Soit U un espace compact et φ : X × U −→ R une fonction s.c.i sur

l’espace produit X × U. Alors la fonction marginale ϕ : X −→ R définie par

ϕ(x) = min
u∈U

φ(x, u), ∀x ∈ X,

est s.c.i sur l’espace X.

Proposition 1.17 ([47]). Si f et g sont deux fonctions à valeurs dans ] − ∞,+∞] telles

que f est inf-compacte, g s.c.i et bornée inférieurement. Alors, la fonction f�g est s.c.i et

bornée inférieurement. De plus cette inf-convolution est exacte, c’est-à-dire que l’inf est

atteint.

Exemple 1.11. Si A est une partie compacte de X et B une partie fermée de X et si les

fonctions indicatrices iA et iB satisfont les hypothèses de la Proposition 1.17, on en déduit

que iA�iB = iA+B est s.c.i ; par conséquent que l’ensemble A + B est fermé.

Proposition 1.18 ([47]). Si X est séparé alors l’ensemble des fonctions inf-compactes à

valeurs dans ] −∞,+∞] est stable pour l’inf-convolution.

1.1.7 Calcul sous-différentiel
1.1.7.1 Fonction conjuguée

Dans cette sous-section, X est un R-espace vectoriel topologique, X∗ son dual topologique

et f une fonction de X dans R. On note le crochet de dualité 〈, 〉 associé à X et X∗ et qui

est défini par :

∀x ∈ X, x∗ ∈ X∗, x∗(x) = 〈x∗, x〉.
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On considère l’ensemble des fonctions affines continues minorant la fonction f

c’est-à-dire l’ensemble des formes linéaires x∗ ∈ X∗ et des réels α, tels que

〈x∗, x〉 − α ≤ f (x), ∀x ∈ X,

qui est équivalente à

α ≥ sup
x∈X
{〈x∗, x〉 − f (x)}.

Pour x∗ fixé dans X∗, le plus petit α vérifiant l’inégalité précédente est

αx∗ = sup
x∈X
{〈x∗, x〉 − f (x)}.

Définition 1.36. On appelle transformée de Fenchel ou conjuguée de Fenchel de la fonc-

tion f , la fonction f ∗ : X∗ −→ R définie par

f ∗(x∗) = sup
x∈X
{〈x∗, x〉 − f (x)}, ∀x∗ ∈ X∗.

Remarque 1.21. En utilisant la convention inf ∅ = +∞ on a

f ∗(x∗) = sup
x∈dom( f )

{〈x∗, x〉 − f (x)}, ∀x∗ ∈ X∗.

Définition 1.37. Pour une fonction h : X∗ −→ R on définit de manière similaire la

conjuguée de Fenchel par

h∗(x) = sup
x∗∈X∗
{〈x∗, x〉 − h(x∗)}, ∀x ∈ X.

La remarque ci-dessus est aussi valable pour la conjuguée de h.

La conjuguée de Fenchel d’une fonction vérifie certaines propriétés.

Théorème 1.8. Soient f , g : X −→ R, h : Y −→ R et k : X∗ −→ R, on a :

(i) f ∗ est convexe et ω∗−s.c.i (faiblement semi-continue inférieurement),

(ii) k∗ est convexe et s.c.i,

(iii) f vérifie l’inégalité de Young-Fenchel :

∀x ∈ X,∀x∗ ∈ X∗, f ∗(x∗) + f (x) ≥ 〈x∗, x〉,

(iv) f ≤ g =⇒ g∗ ≤ f ∗,

(v) si α > 0 alors (α f )∗(x∗) = α f ∗(α−1x∗) pour tout x∗ ∈ X∗,

(vi) si β , 0 alors ( f (β.))∗(x∗) = f ∗(β−1x∗) pour tout x∗ ∈ X∗,

(vii) si x0 ∈ X et g(x) = f (x + x0) pour x ∈ X, alors g∗(x∗) = f ∗(x∗) − 〈x∗, x0〉,

(viii) si x∗0 ∈ X∗ alors ( f + x∗0)∗(x∗) = f ∗(x∗ − x∗0) pour tout x∗ ∈ X∗,
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(ix) si f , h sont propres et Φ : X × Y −→ R, Φ(x, y) := f (x) + h(y), alors

Φ∗(x∗, y∗) = f ∗(x∗) + h∗(y∗) pour tout (x∗, y∗) ∈ X∗ × Y∗,

(x) ( f�g)∗ = f ∗ + g∗.

Preuve.

(i) Si f n’est pas propre alors f ∗ = +∞ ou f ∗ = −∞, donc f ∗ est constante et par

conséquent f ∗ est convexe et ω∗-s.c.i.

Si f est propre, alors on a

f ∗(x∗) = sup
x∈dom( f )

ϕx(x∗),

avec la fonction ϕx : X∗ −→ R définie par

ϕx(x∗) = 〈x∗, x〉 − f (x).

Il est clair que pour tout x ∈ dom( f ), ϕx est affine donc convexe, de plus ϕx est

ω∗-continue par définition donc ω∗-s.c.i. Par conséquent, f ∗ est convexe et ω∗-s.c.i en

tant que supremum d’une famille de telles fonctions.

(ii) (ii) est la version duale de (i) par conséquent on raisonne de manière analogue qu’au

niveau de (i).

(iii) On a

∀x∗ ∈ X∗, f ∗(x∗) = sup
x∈X
{〈x∗, x〉 − f (x)} ≥ 〈x∗, x〉 − f (x), ∀x ∈ X.

=⇒ ∀x ∈ X,∀x∗ ∈ X∗, f ∗(x∗) + f (x) ≥ 〈x∗, x〉.

(iv) On a

∀x ∈ X, f (x) ≤ g(x) =⇒ 〈x∗, x〉 − f (x) ≥ 〈x∗, x〉 − g(x), ∀x∗ ∈ X∗

=⇒ f ∗(x∗) ≥ g∗(x∗), ∀x∗ ∈ X∗.

(v) Soit α > 0, pour tout x∗ ∈ X∗,

(α f )∗(x∗) = sup
x∈X
{〈x∗, x〉 − α f (x)}

=α sup
x∈X
{〈

1
α

x∗, x〉 − f (x)}

=α f ∗(
x∗

α
).
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(vi) Soit β ∈ R∗, pour tout x∗ ∈ X∗,

( f (β.))∗(x∗) = sup
x∈X
{〈x∗, x〉 − f (βx)}

= sup
y∈X
{〈x∗,

1
β

y〉 − f (y)}

=( f )∗(
1
β

x∗).

(vii) Soit x0 ∈ X, on a g(x) = f (x + x0) alors

∀x∗ ∈ X∗, g∗(x∗) = sup
x∈X
{〈x∗, x〉 − f (x + x0)}

= sup
y∈X
{〈x∗, y − x0〉 − f (y)}

= sup
y∈X
{〈x∗, y〉 − f (y)} − 〈x∗, x0〉

= f ∗(x∗) − 〈x∗, x0〉.

(viii) Si x∗0 ∈ X∗ alors

( f + x∗0)∗(x∗) = sup
x∈X
{〈x∗, x〉 − f (x) + 〈x∗0, x〉}

= sup
x∈X
{〈x∗ − x∗0, x〉 − f (x)}

= f ∗(x∗ − x∗0), ∀x∗ ∈ X∗.

(ix) Si f , h sont propres et Φ : X × Y −→ R, Φ(x, y) := f (x) + h(y), alors

Φ∗(x∗, y∗) = sup
(x,y)∈X×Y

{〈(x∗, y∗), (x, y)〉 − f (x) − h(y)〉}

= sup
(x,y)∈X×Y

{〈x∗, x〉 − f (x) + 〈y∗, y〉 − h(y)〉}

= sup
x∈X
{〈x∗, x〉 − f (x)} + sup

y∈Y
{〈y∗, y〉 − h(y)〉}

= f ∗(x∗) + h∗(y∗), ∀(x∗, y∗) ∈ X∗ × Y∗.

(x) On a

( f�g)∗(x∗) = sup
x∈X
{〈x∗, x〉 − inf

y∈X
{ f (y) + g(x − y)}}

= sup
(x,y)∈X×X

{〈x∗, x〉 − f (y) − g(x − y)}

= sup
(z,y)∈X×X

{〈x∗, z + y〉 − f (y) − g(z)}

= f ∗(x∗) + g∗(x∗), ∀x∗ ∈ X∗.

�
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Dans la suite on note Γ0(X) l’ensemble des fonctions f : X −→ R convexes, s.c.i et

propres et Γ0(X∗) l’ensemble des fonctions h : X∗ −→ R convexes, ω∗-s.c.i et propres.

Corollaire 1.12. Soient f : X −→ R une fonction, alors les assertions suivantes sont

équivalentes :

(i) f ∗ ∈ Γ0(X∗)

(ii)


dom( f ) , ∅

∃x∗ ∈ X∗, α ∈ R : ∀x ∈ X, f (x) ≥ 〈x∗, x〉 + α.

Preuve.

Si f ∗ ∈ Γ0(X∗), alors dom( f ) , ∅ et ∃x∗ ∈ X∗, α ∈ R tels que f ∗(x∗) = −α.

f ∗(x∗) = −α =⇒ 〈x∗, x〉 − f (x) ≤ −α, ∀x ∈ X

=⇒ f (x) ≥ 〈x∗, x〉 + α, ∀x ∈ X.

Inversement supposons (ii) vérifiée.

D’après (i) du Théorème 1.8, f ∗ est convexe et ω∗-s.c.i. Comme f (x) ≥ 〈x∗, x〉 + α, alors

〈x∗, x〉 − f (x) ≤ −α, x ∈ X,∀x∗ ∈ X∗

=⇒ f (x∗) = sup
x∈X
{〈x∗, x〉 − f (x)} ≤ −α < +∞, ∀x∗ ∈ X∗.

Comme dom( f ) , ∅, alors

−∞ < f ∗(x∗), ∀x∗ ∈ X∗.

�

Le résultat suivant est fondamental en théorie de la dualité.

Théorème 1.9 ([18], [31],[69]). Soit f ∈ Γ0(X), alors f ∗ ∈ Γ0(X∗) et f ∗∗ := ( f ∗)∗ = f .

Propriété 1.11. Soient fi : X −→ R, i ∈ I (I un ensemble d’indices) une famille de

fonctions. On définit la fonction inf
i∈I

fi par

(inf
i∈I

fi)(x) = inf
i∈I

fi(x);

alors

(inf
i∈I

fi)∗ = sup
i∈I

f ∗i .
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Preuve.

En effet, pour tout x∗ ∈ X∗, on a :

(inf
i∈I

fi)∗(x∗) = sup
x∈X
{〈x∗, x〉 − inf

i∈I
fi(x)}

= sup
x∈X

sup
i∈I
{〈x∗, x〉 − fi(x)}

= sup
x∈X,i∈I

{〈x∗, x〉 − fi(x)}

= sup
i∈I

sup
x∈X
{〈x∗, x〉 − fi(x)}

= sup
i∈I

f ∗i (x∗).

�

Définition 1.38. Considérons le sous-ensemble A ⊂ X non vide ; la fonction support de A

est notée et définie par σA : X∗ −→ R,

σA(x∗) := sup{〈x∗, x〉 : x ∈ A}, ∀x∗ ∈ X∗.

Pour C ⊂ X∗ non vide, on définit de manière analogue la fonction support de C.

Propriété 1.12 ([18],[69]). La fonction support vérifie :

(i) σA est ω∗-s.c.i,

(ii) si B ⊂ X est un autre sous-ensemble non vide de X alors

σA+B = σA + σB et σA∪B = σA ∨ σB ;

(iii) σA(x∗) = (iA)∗(x∗) = sup
x∈coA
〈x∗, x〉 = (icoA)∗(x∗) = σcoA(x∗), ∀x∗ ∈ X∗,

(iv) dom(σA) = dom((iA)∗) = {x∗ ∈ X∗ : sup
x∈A
〈x∗, x〉 < +∞}.

1.1.7.2 Sous-différentiel

Dans cette sous section, X est un R-espace vectoriel localement convexe et séparé.

Définition 1.39. Soient f : X −→ R et x ∈ X tel que f (x) ∈ R . Un élément x∗ ∈ X∗ est

appelé sous-gradient de la fonction f en x si on a la relation suivante :

∀x ∈ X : 〈x∗, x − x〉 ≤ f (x) − f (x). (1.4)

L’ensemble de tous les sous-gradients de la fonction f en x est noté ∂ f (x), c’est-à-dire :

∂ f (x) = {x∗ ∈ X∗ | 〈x∗, x − x〉 ≤ f (x) − f (x), ∀x ∈ X} (1.5)

et est appelé sous-différentiel ou sous-différentiel de Fenchel de f en x.

f est dite sous-différentiable en x ∈ X, si ∂ f (x) , ∅.
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Remarque 1.22. 0 ∈ ∂ f (x) si et seulement si f (x) ≤ f (x) ∀x ∈ X et donc x réalise le

minimum de f : X −→ R équivaut à 0 ∈ ∂ f (x).

Le lemme suivant donne une caractérisation du sous-différentiel.

Lemme 1.7. Pour x ∈ X, si f (x) ∈ R, alors

x∗ ∈ ∂ f (x)⇐⇒ f ∗(x∗) + f (x) = 〈x∗, x〉. (1.6)

Preuve.

On a

x∗ ∈ ∂ f (x)⇐⇒ 〈x∗, x − x〉 ≤ f (x) − f (x), ∀x ∈ X

⇐⇒ f (x) − 〈x∗, x〉 ≤ f (x) − 〈x∗, x〉, ∀x ∈ X

⇐⇒ f ∗(x∗) + f (x) ≤ 〈x∗, x〉

⇐⇒ f ∗(x∗) + f (x) = 〈x∗, x〉,

car l’autre inégalité est celle de Fenchel. �

Lemme 1.8. Soient f : X −→ R et x ∈ X :

(i) si ∂ f (x) , ∅, alors f (x) = f ∗∗(x),

(ii) si f ∗∗(x) ∈ R, alors

∂ f ∗∗(x) =
{
x∗ ∈ X∗ : 〈x∗, x〉 − f ∗(x∗) = sup

x∗∈X∗
{〈x∗, x〉 − f ∗(x∗)}

}
,

(iii) si f (x) = f ∗∗(x) ∈ R, alors ∂ f (x) = ∂ f ∗∗(x).

Preuve.

(i) On a

∂ f (x) , ∅ ⇐⇒ ∃x∗ ∈ X∗ : f ∗(x∗) + f (x) = 〈x∗, x〉

⇐⇒ f (x) = 〈x∗, x〉 − f ∗(x∗)

⇐⇒ f (x) ≤ f ∗∗(x)

⇐⇒ f (x) = f ∗∗(x),

car f ∗∗ ≤ f .

(ii) Il suffit d’appliquer (1.6) à la fonction h = f ∗∗.
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(iii) si f (x) = f ∗∗(x) ∈ R, on a

x∗ ∈ ∂ f ∗∗(x)⇐⇒ 〈x∗, y − x〉 ≤ f ∗∗(y) − f ∗∗(x), ∀y ∈ X

⇐⇒ 〈x∗, y − x〉 ≤ f ∗∗(y) − f (x), ∀y ∈ X

=⇒ 〈x∗, y − x〉 ≤ f (y) − f (x), ∀y ∈ X

=⇒ x∗ ∈ ∂ f (x) =⇒ ∂ f ∗∗(x) ⊂ ∂ f (x).

On a

x∗ ∈ ∂ f (x)⇐⇒ 〈x∗, y − x〉 ≤ f (y) − f ∗∗(x), ∀y ∈ X

⇐⇒ f (x) + 〈x∗, y − x〉 ≤ f (y), ∀y ∈ X.

Soit h(y) = f (x) + 〈x∗, y − x〉, h(y) est une minorante affine de f exacte au point x.

Puisque la biconjuguée est le supremum des minorantes affines, alors h(y) est aussi

minorante affine de f ∗∗ exacte au point x. Donc x∗ ∈ ∂ f ∗∗(x).

�

De manière analogue on définit le sous-différentiel d’une fonction h : X∗ −→ R en un

point x∗ ∈ X∗ avec h(x∗) ∈ R par :

∂h(x∗) = {x ∈ X | ∀x∗ ∈ X∗, 〈x∗ − x∗, x〉 ≤ h(x∗) − h(x∗)}.

Lemme 1.9. Si f : X −→ R est une fonction s.c.i propre, x ∈ dom( f ) et x∗ ∈ X∗. Alors

les relations suivantes sont équivalentes :

(i) x∗ ∈ ∂ f (x),

(ii) x ∈ ∂ f ∗(x∗),

(iii) f (x) + f ∗(x∗) = 〈x∗, x〉.

Preuve.

(i) est équivalente à (ii) par définition et l’équivalence entre (i) et (iii) découle de (1.6). �

31



1.2. QUELQUES NOTIONS SUR L’OPTIMISATION

1.2 Quelques notions sur l’optimisation

Dans cette section après avoir présenté le concept de problème d’optimisation, nous rap-

pelons une théorie de construction de problème dual.

1.2.1 Problème d’optimisation

Soient un ensemble quelconque X, une fonction f : X −→ R et K un sous-ensemble de

X. Un problème d’optimisation consiste à chercher une variable physique ou de décision

ou de commande de façon à optimiser (minimiser ou maximiser selon le cas) :

(i) un critère physique (action, énergie, . . . ) ,

(ii) un critère technique (précision, stabilité, durée, . . . ) ou

(iii) économique (coût, rentabilité,. . . ),

tout en respectant certaines contraintes liées à la situation considérée.

Mathématiquement on peut modéliser un problème d’optimisation par :

(P) minimiser f (x), s.l.c x ∈ K,

où f : X −→ R est une fonction, X un ensemble, K un sous-ensemble de X et s.l.c signifie

”sous les contraintes”.

Le problème est caractérisé par :

(i) la fonction f appelée fonction objectif ou critère ou fonction économique,

(ii) l’ensemble K appelé ensemble des contraintes,

(iii) l’ensemble S (P) = K ∩ dom( f ) appelé l’ensemble admissible ou réalisable,

(iv) la valeur du problème notée val(P) ou inf(P) est définie par :

val(P) = inf
x∈K

f (x) = inf{ f (x) : x ∈ K}. L’ensemble des solutions optimales est

notée Argmin(P) = {x ∈ X : f (x) = val(P)}.

Remarque 1.23. La maximisation d’une fonction,

maximiser f (x), s.l.c x ∈ K,

peut se ramener à l’opposé du problème de minimisation suivant :

minimiser (− f (x)), s.l.c x ∈ K.

Généralement l’ensemble K s’écrit sous la forme :

K = {x ∈ X : g(x) ∈ C}
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où g est une fonction de X dans un ensemble Y et C un sous-ensemble de Y . Selon la

nature des données, le problème d’optimisation porte plusieurs noms. Supposons que X

et Y sont des espaces vectoriels, alors :

(i) si K et f sont convexes, le problème (P) est dit convexe,

(ii) si l’ensemble K est un cône, alors (P) est un problème d’optimisation conique et en

particulier :

si K et f sont convexes, on parle de programmation convexe conique. Si de plus les

données sont incertaines le problème est dit convexe conique incertain ;

- si f et g sont affines, Y = Rn et C l’orthant positif, on parle de programmation

linéaire ;

- si f est quadratique, Y = Rn et K le cône de Lorentz, on parle de programma-

tion quadratique ;

- si f est affine, Y = Sn et K le cône des matrices semi-définies positives, on

parle de programmation semi-définies positives.

1.2.2 La théorie de la dualité

La dualité est une technique couramment utilisée en optimisation dont l’idée est la sui-

vante : étant donné un problème d’optimisation appelé primal, on lui associe un autre

problème appelé dual dont la valeur est une minorante de celle du primal. En général, la

question est de savoir quand avons nous l’égalité (zero dualité ou saut de dualité nul) entre

les valeurs des deux problèmes et comment passer de l’ensemble des solutions optimales

de l’un des problèmes à celui de l’autre ? Une méthode de construction du dual est la

dualité par perturbation qui utilise la conjugaison de Fenchel ([18], [55]).

1.2.2.1 Méthode de construction du dual par perturbation ([15], [55])

Considérons le problème de minimisation suivant :

minimiser f (x), s.l.c x ∈ X, (P)

où X est un espace vectoriel topologique et f : X −→ R est une fonction. On se donne

un autre espace vectoriel topologique Y (appelé espace des perturbations) et une fonction

F : X × Y −→ R vérifiant

F(x, 0Y) = f (x), ∀x ∈ X. (1.7)

La fonction F s’appelle fonction de perturbation associée au problème (P).

Il résulte immédiatement de (1.7) que le problème (P) s’écrit aussi :

minimiser F(x, 0Y), s.l.c x ∈ X. (P)
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On appelle dual par perturbation du problème (P), le programme suivant :

maximiser (−F∗(0X∗ , y∗)), s.l.c y∗ ∈ Y∗, (D)

où F∗ : X∗ × Y∗ −→ R est la conjuguée de Fenchel de F.

D’après l’inégalité de Young-Fenchel, pour tout x ∈ X et pour tout y∗ ∈ Y∗, on a

F(x, 0Y) + F∗(0X∗ , y∗) ≥ 〈(x, 0X∗), (0Y , y∗)〉 = 0⇐⇒ F(x, 0Y) ≥ −F∗(0X∗ , y∗).

D’où

−∞ ≤ val(D) ≤ val(P) ≤ +∞. (1.8)

La propriété (1.8) s’appelle dualité faible. Il existe dans la littérature plusieurs types de

conditions de qualification pour obtenir l’égalité val(D) = val(P) avec le dual admettant

au moins une solution optimale. Dans la sous-section suivante nous donnons un exemple

de problème d’optimisation avec une fonction de perturbation correspondante (pour plus

d’exemples, on peut se référer à [55], [69]).

1.2.2.2 Exemple : problème conique

Considérons le problème suivant :

minimiser f (x), s.l.c x ∈ C et g(x) ∈ (−K), (Pc)

où f : X −→ R est convexe, C ⊂ X est un convexe, K est un cône convexe fermé non vide

de Y qui est un espace vectoriel topologique et g : X −→ Y est une fonction convexe dans

le sens que g(λx + (1 − λ)x′) − λg(x) − (1 − λ)g(x′) ∈ K, ∀x, x′ ∈ X,∀λ ∈]0; 1[.

Le problème (Pc) est un problème d’optimisation convexe conique.

On associe au problème (Pc), la fonction de perturbation (verticale) φ : X × Y −→ R,

définie par

φ(x, y) =


f (x) si x ∈ C et y − g(x) ∈ K

+∞ sinon.

Par un calcul direct, on obtient pour y∗ ∈ Y∗,

−φ∗(0X∗ , y∗) =


inf
x∈C
{ f (x) + 〈g(x), y∗〉} si y∗ ∈ K∗

−∞ sinon ,

où

K+ := {y∗ ∈ Y∗ | 〈y∗, y〉 ≥ 0, ∀y ∈ K},
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désigne le cône polaire positif du cône K. Le dual par perturbation correspondant est alors

défini par

Maximiser inf
x∈C
{ f (x) + 〈g(x), y∗〉}, s.l.c y∗ ∈ K∗. (Dc)

Remarque 1.24. Un cas particulier du problème convexe conique est le problème de pro-

grammation convexe suivant.

minimiser f (x) s.l.c x ∈ X, gi(x) ≤ 0, ∀i = 1, . . . , n, (1.9)

où X est un R-espace vectoriel, f , g1, g2, . . . , gn : X −→ R sont des fonctions convexes

propres telles que dom( f )
⋂

(∩n
i=1dom(gi)) , ∅.

La fonction de perturbation φ : X × Rn −→ R associée au problème (1.9) est définie par :

φ(x, y) = f (x) + i{(x,y)∈X×Rn:gi(x)≤yi, ∀ i=1,...,n}(x, y),

où les yi sont les composantes du vecteur y.

Par suite, le problème paramétré de paramètre y ∈ Rn associé au problème (1.9) est :

minimiser φ(x, y) = f (x) + i{(x,y)∈X×Rn:gi(x)≤yi, ∀ i=1,...,n}(x, y), s.l.c x ∈ X. (1.10)

On a

−φ∗(0X∗ , y∗) =


inf
x∈X

 f (x) +

n∑
i=1

y∗i gi(x)

 si y∗ ∈ Rn
+

−∞ sinon ,

avec y∗i , i = 1, . . . , n, les composantes de y∗.

Le problème dual par perturbation (ou dual Lagrangien) associé au problème (1.9) est :

maximiser inf
x∈X

 f (x) +

n∑
i=1

y∗i gi(x)

 , s.l.c y∗ ∈ Rn
+. (1.11)
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CHAPITRE 2

Dualité pour des problèmes paramétriques

2.1 Introduction

La théorie de la dualité est importante en optimisation sous contraintes et a été long-

temps étudiée. La dualité de Fenchel permet de transformer un problème initial (problème

primal) en un problème d’optimisation sur l’ensemble dual (problème dual). Dans cer-

tain cas, les problèmes duaux sont plus faciles à résoudre que les problèmes primaux

([27], [30]). On sait que la valeur du problème dual est toujours inférieure à la valeur du

problème primal. Un objectif en analyse convexe est de donner des conditions suffisantes

garantissant la dualité forte c’est-à-dire la situation où il n’y a pas de saut de dualité et

où le problème dual a au moins une solution optimale. Plusieurs conditions sont données

dans le but de prouver l’existence de tel saut de dualité dans divers cadres ([19], [34],

[55], [69]).

Dans ce chapitre nous donnons des conditions de qualifications de type intérieur et ferme-

ture garantissant des résultats de dualité forte d’un problème paramétrique. Nous donnons

aussi les versions duales de nos résultats de dualité forte ([5]). Nous appliquons ensuite

ces propriétés de dualité forte à la minimisation du maximum de deux fonctions convexes.

Dans ce cas nous généralisons des résultats de dualité forte obtenus par Traoré-Volle

([65]).
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2.2. DUALITÉ EN OPTIMISATION CONVEXE DANS LES ESPACES VECTORIELS TOPOLOGIQUES

2.2 Dualité en optimisation convexe dans les espaces vec-
toriels topologiques

Dans la suite, U désigne un R-espace vectoriel topologique.

Le lemme suivant nous sera utile pour la suite.

Lemme 2.1 ([47]). Soit f : U −→ R une fonction convexe et majorée au voisinage d’un

certain point de U. Alors, soit f (u) = −∞ ∀u ∈ int(dom( f )) soit f est sous-différentiable

sur int(dom( f )).

Preuve.

On obtient le résultat en remarquant que pour tout A ⊂ U, si int(A) est non vide et A

convexe alors int(A) = Ai = Ari où int(A) est l’intérieur topologique de A puis, on utilise

les lemmes ci-dessous pour conclure. �

Lemme 2.2 ([4], [69]). Soit f : U −→ R une fonction convexe. S’il existe u0 ∈ U tel que

f (u0) = −∞ alors f (u) = −∞ pour tout u ∈ (dom( f ))ri.

Lemme 2.3 ([4], [47]). Soit f : U −→ R une fonction convexe. Si f est majorée au

voisinage d’un certain point de U, alors f est continue sur l’intérieur de son domaine

int(dom( f )).

Lemme 2.4 ([47]). Une fonction convexe f : U −→ R est sous-différentiable en chaque

point où elle est finie et continue.

2.2.1 Résultats de stabilité

Soient X et Y deux espaces vectoriels topologiques, X∗ et Y∗ leurs duaux topologiques

respectifs, y ∈ Y . Considérons la fonction convexe F : X × Y −→ R et le problème

paramétrique

minimiser F(x, y) , s.l.c x ∈ X. (Py)

Associons à la fonction F, la fonction marginale h : Y −→ R, définie par

h(y) = inf
x∈X

F(x, y) = inf(Py).

Il est clair que

h∗ = F∗(0X∗ , .). (2.1)

Pour construire le dual de (Py) ; introduisons la fonction de perturbation (horizontale)

Gy : X × Y −→ R définie par

Gy(x, u) = F(x, y + u), ∀(x, u) ∈ X × Y. (2.2)
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Par un calcul direct, on a :

G∗y(0X∗ , u∗) = F∗(0X∗ , u∗) − 〈u∗, y〉, ∀u∗ ∈ Y∗.

Le problème dual perturbationnel du problème (Py) est donc :

maximiser −G∗y(0X∗ , y∗), s.l.c y∗ ∈ Y∗, (Dy)

soit plus explicitement

maximiser 〈y∗, y〉 − F∗(0X∗ , y∗), s.l.c y∗ ∈ Y∗. (Dy)

Nous savons que la dualité faible est toujours vérifiée c’est-à-dire :

−∞ ≤ sup(Dy) = h∗∗(y) ≤ h(y) = inf(Py) ≤ +∞. (2.3)

Remarque 2.1. En considérant l’ensemble des solutions optimales du problème (Dy) pour

un certain y ∈ Y ,

Argmin(Dy) := {y∗ ∈ Y∗ | 〈y∗, y〉 − F∗(0X∗ , y∗) = sup(Dy) ∈ R}

et en appliquant le Lemme 1.8, (ii) à la fonction marginale h on obtient

Argmin(Dy) = ∂h∗∗(y).

Lemme 2.5. En considérant la fonction marginale h associée au problème (Py), on a

l’équivalence entre les deux assertions suivantes :

(i) ∂h(y) , ∅,

(ii) inf(Py) = max(Dy) ∈ R c’est-à-dire inf
x∈X

F(x, y) = max
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} ∈ R.

Preuve.

Soit y∗ ∈ ∂h(y) , ∅. En utilisant la caractérisation du sous-différentiel dans le Lemme 1.7,

on a :

y∗ ∈ ∂h(y)⇐⇒ h∗(y∗) + h(y) = 〈y∗, y〉

⇐⇒ h(y) = 〈y∗, y〉 − h∗(y∗).

Ainsi,

inf(Py) = h(y) = 〈y∗, y〉 − h∗(y∗) = 〈y∗, y〉 − F∗(0X∗ , y∗) ≤ sup(Dy)

et on conclut en utilisant la dualité faible (2.3). �
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Définition 2.1. Le problème (Py) est dit stable si l’une des conditions équivalentes du

Lemme 2.5 est satisfaite.

Le théorème suivant donne une condition assurant la stabilité du problème (Py).

Théorème 2.1. Si la condition suivante est vérifiée

∃ t ∈ R : int(PrY[F ≤ t]) , ∅, (2.4)

alors, soit

max
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = inf

x∈X
F(x, y) ∈ R, ∀y ∈ int(PrY(dom(F))),

soit

−F∗(0X∗ , y∗) = inf
x∈X

F(x, y) = −∞, ∀y ∈ int(PrY(dom(F))) et ∀y∗ ∈ Y∗.

Preuve.

Soit la fonction h(y) = inf
x∈X

F(x, y), h étant la fonction marginale associée à la fonction

convexe F, elle est donc convexe d’après le Théorème 1.2. Soit un réel t pour lequel

l’hypothèse (2.4) est vérifiée. Prenons y ∈ int(PrY[F ≤ t]), alors il existe un voisinage

V ∈ NY(y) dans Y tel que :

∀y ∈ V,∃ x ∈ X : F(x, y) ≤ t.

Pour tout y ∈ Y , on a :

h(y) ≤ F(x, y), ∀x ∈ X,

d’où

h(y) ≤ F(x, y) ≤ t, ∀y ∈ V.

Ainsi, h est majorée au voisinage de y et d’après le Lemme 2.1, soit

∂h(y) , ∅, ∀y ∈ int(dom(h)) = int(PrY(dom(F))),

soit

h(y) = −∞, ∀y ∈ int(PrY(dom(F))).

Dans le premier cas, le Lemme 2.5 donne l’égalité

max
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = inf

x∈X
F(x, y) ∈ R, ∀y ∈ int(PrY(dom(F))).

Dans le second cas, en utilisant la dualité faible (2.3), on déduit que pour chaque y ∈ Y ,

〈y∗, y〉 − F∗(0X∗ , y∗) ≤ h(y), ∀y∗ ∈ Y∗.
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Il en résulte que

h(y) = −∞ =⇒ 〈y∗, y〉 − F∗(0X∗ , y∗) = −∞ =⇒ −F∗(0X∗ , y∗) = −∞.

D’où −F∗(0X∗ , y∗) = h(y) = −∞, ∀y ∈ int(PrY(dom(F))) et ∀y∗ ∈ Y∗. �

Remarque 2.2. La condition (2.4) est en particulier vérifiée s’il existe (x, y) ∈ dom(F) tel

que F(x, .) est s.c.s en y.

Corollaire 2.1. Supposons que :

∃ t ∈ R : 0Y ∈ int(PrY[F ≤ t]). (2.5)

Alors,

−∞ ≤ max
y∗∈Y∗
{−F∗(0X∗ , y∗)} = inf

x∈X
F(x, 0Y) < +∞.

Preuve.

D’après (2.5), h(0Y) , +∞. En prenant y = 0Y dans le Théorème 2.1 on obtient le résultat.

�

Nous allons réduire l’ensemble de la condition (2.4). Pour cela, nous aurons besoin du

lemme suivant qui est beaucoup plus utilisé pour des espaces vectoriels topologiques loca-

lement convexes et séparés (e.v.t.l.c.s) ; mais ce lemme est aussi valable même si l’espace

n’est pas séparé ([20]).

Lemme 2.6 ([20]). Soit l une forme linéaire continue définie sur un sous-espace vectoriel

d’un espace vectoriel topologique localement convexe (e.v.t.l.c) Y ; il existe alors une

forme linéaire continue définie sur Y et prolongeant l.

Soit W un sous-espace vectoriel d’un espace vectoriel topologique U. Si A est un sous-

ensemble de W, nous notons intW(A) l’intérieur topologique de A relative à la topologie

induite sur W par la topologie de U.

Lemme 2.7. Soit U un e.v.t.l.c, f : U −→ R une fonction convexe, W = vect(dom( f ))

l’espace vectoriel engendré par dom( f ) dans U. Si

∃ t ∈ R : intW([ f ≤ t]) , ∅, (2.6)

alors, soit

f (u) = −∞, ∀u ∈ intW(dom( f )),

soit

∂ f (u) , ∅, ∀u ∈ intW(dom( f )).
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Preuve.

Soit k la restriction de la fonction f sur W.

Soit u ∈ intW([ f ≤ t]) = intW([k ≤ t]). Il existe un voisinage V ∈ NW(u) dans W tel que :

∀u ∈ V, k(u) ≤ t,

par conséquent k est majorée au voisinage de u. D’après le Lemme 2.1 soit

k(u) = f (u) = −∞, ∀u ∈ intW(dom(k)),

soit

∂k(u) , ∅, ∀u ∈ intW(dom(k)).

Soient v ∈ intW(dom( f )) et w∗ ∈ ∂k(v). D’après le Lemme 2.6, il existe une forme linéaire

continue u∗ ∈ U∗ prolongeant w∗ sur U. Du fait que w∗ ∈ ∂k(v), pour tout u ∈ W, on a

k(u) ≥ k(v) + 〈w∗, u − v〉.

Il en résulte que pour tout u ∈ W

f (u) ≥ f (v) + 〈u∗, u − v〉.

Comme dom( f ) ⊂ W alors f (u) = +∞ pour tout u ∈ U \W et il vient que pour tout u ∈ U,

f (u) ≥ f (v) + 〈u∗, u − v〉.

Par suite, u∗ ∈ ∂ f (v) et donc ∂ f (v) , ∅ pour tout v ∈ intW(dom( f )) . �

Théorème 2.2. Si X est un e.v.t, Y un e.v.t.l.c, F : X × Y −→ R une fonction convexe,

W = vect(PrY(dom(F))) et si :

∃ t ∈ R : intW(PrY([F ≤ t])) , ∅, (2.7)

alors, soit

max
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = inf

x∈X
F(x, y) ∈ R, ∀y ∈ intW(PrY(dom(F))),

soit

−F∗(0X∗ , y∗) = inf
x∈X

F(x, y) = −∞, ∀y ∈ intW(PrY(dom(F))) et ∀ y∗ ∈ Y∗.
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Preuve.

Soit la fonction convexe h : Y −→ R définie par h(y) = inf
x∈X

F(x, y), ∀y ∈ Y . Comme (2.7)

a lieu, choisissons v ∈ intW(PrY([F ≤ t])). Il existe un voisinage V de v dans W tel que

pour tout y ∈ V , il existe x ∈ X tel que

F(x, y) ≤ t.

Puisque

h(y) ≤ F(x, y)

on a

h(y) ≤ t, ∀y ∈ V.

En appliquant le Lemme 2.7 à la fonction h avec W = vect(dom(h)) = vect(PrY(dom((F))),

on a soit

∂h(y) , ∅, ∀y ∈ intW(dom(h)),

soit

h(y) = −∞, ∀y ∈ intW(dom(h)).

En utilisant le Lemme 2.5 dans le premier cas, on a :

max
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = inf

x∈X
F(x, y) ∈ R, ∀y ∈ intW(PrY(dom(F)))

et dans le second cas, la dualité faible (2.3) appliquée à (Py) donne

−F∗(0X∗ , y∗) = inf
x∈X

F(x, y) = −∞, ∀y ∈ intW(PrY(dom(F))) et ∀ y∗ ∈ Y∗.

�

Si X est un espace vectoriel normé (e.v.n) on peut enrichir les résultats précédents. Dans

ce cas, notons par ‖ ‖ la norme sur X, ‖ ‖∗ la norme duale associée et BX la boule unité

fermée de X. L’inégalité de Cauchy-Schwartz s’énonce par

|〈x∗, x〉| ≤ ‖x∗‖∗‖x‖, ∀(x, x∗) ∈ X × X∗. (2.8)

Théorème 2.3. Soit X un e.v.n et Y un e.v.t, F : X × Y −→ R une fonction convexe.

Supposons que :

∃t ∈ R, r > 0 : int(PrY([F ≤ t] ∩ rBX × Y)) , ∅, (2.9)

alors, pour chaque x∗ ∈ X∗, soit

max
y∗∈Y∗
{〈y∗, y〉 − F∗(x∗, y∗)} = inf

x∈X
{F(x, y) − 〈x∗, x〉} ∈ R, ∀y ∈ int(PrY(dom(F))),

soit

−F∗(x∗, y∗) = inf
x∈X
{F(x, y) − 〈x∗, x〉} = −∞, ∀y ∈ int(PrY(dom(F))) et ∀y∗ ∈ Y∗.
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Preuve.

Soit x∗ ∈ X∗, considérons la fonction hx∗ : Y −→ R, définie par

hx∗(y) = inf
x∈X
{F(x, y) − 〈x∗, x〉}.

hx∗ est convexe car fonction marginale de la fonction convexe (x, y) 7−→ F(x, y) − 〈x∗, x〉.

Comme la condition (2.9) est vérifiée, choisissons v ∈ int(PrY([F ≤ t]∩rBX×Y)). Il existe

un voisinage V ∈ NY(v) dans Y tel que :

∀y ∈ V,∃x ∈ rBX : F(x, y) ≤ t.

On en déduit que

hx∗(y) ≤ F(x, y) − 〈x∗, x〉

≤ t − 〈x∗, x〉

≤ t − 〈x∗, x〉

≤ t + r‖x∗‖∗ (d’après (2.8)).

La fonction hx∗ est donc majorée dans le voisinage V et d’après le Lemme 2.1,

soit

∂hx∗(y) , ∅, ∀y ∈ int(dom(hx∗)),

soit

hx∗(y) = −∞, ∀y ∈ int(dom(hx∗)).

On a

dom(hx∗) = PrY(dom(F − 〈x∗, .〉)) = PrY(dom(F)),

d’où

int(dom(hx∗)) = int(PrY(dom(F))).

D’après le Lemme 2.5,

∂hx∗(y) , ∅, ∀y ∈ int(dom(hx∗)) est équivalent à

inf
x∈X
{F(x, y) − 〈x∗, x〉} = max

y∗∈Y∗
{〈y∗, y〉 − F∗(x∗, y∗)} ∈ R, ∀y ∈ int(PrY(dom(F))).

Dans le deuxième cas, on a

hx∗(y) = −∞, ∀y ∈ int(dom(hx∗)) =⇒ h∗x∗(y
∗) = +∞, ∀y∗ ∈ Y∗

=⇒ F∗(x∗, y∗) = +∞, ∀y∗ ∈ Y∗.

On conclut en utilisant la dualité faible (2.3). �
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2.2. DUALITÉ EN OPTIMISATION CONVEXE DANS LES ESPACES VECTORIELS TOPOLOGIQUES

Remarque 2.3. Le résultat précédant montre qu’on peut obtenir la stabilité du problème

(Py) dans le cas où on ajoute à la fonction objectif, une forme linéaire continue.

Tout comme dans le Théorème 2.2, en considérant le sous-espace vectoriel

W = vect(PrY(dom(F))), on obtient le résultat suivant.

Théorème 2.4. Soient X un espace vectoriel normé, Y un espace vectoriel topologique,

F : X × Y −→ R une fonction convexe et W = vect(PrY(dom(F))). Supposons que

∃t ∈ R, r > 0 : intW(PrY([F ≤ t] ∩ rBX × Y)) , ∅, (2.10)

alors pour chaque x∗ ∈ X∗, soit

max
y∗∈Y∗
{〈y∗, y〉 − F∗(x∗, y∗)} = inf

x∈X
{F(x, y) − 〈x∗, x〉} ∈ R, ∀y ∈ intW(PrY(dom(F))),

soit

−F∗(x∗, y∗) = inf
x∈X
{F(x, y) − 〈x∗, x〉} = −∞, ∀y ∈ intW(PrY(dom(F))) et ∀y∗ ∈ Y∗.

Preuve.

Soit x∗ ∈ X∗, considérons la fonction hx∗ définie sur Y par

hx∗(y) = inf
x∈X
{F(x, y) − 〈x∗, x〉}.

D’après la condition (2.10), choisissons

v ∈ intW(PrY([F ≤ t] ∩ rBX × Y)).

Il existe un voisinage V de v dans W tel que pour tout y ∈ V , il existe x ∈ rBX tel que

hx∗(y) ≤ F(x, y) − 〈x∗, x〉 ≤ t + r‖x∗‖∗.

En appliquant le Lemme 2.7 à la fonction hx∗ , on a

soit

∂hx∗(y) , ∅, ∀y ∈ intW(PrY(dom(F))),

soit

hx∗(y) = −∞, ∀y ∈ intW(PrY(dom(F))).

On conclut en utilisant le Lemme 2.5 et la dualité faible (2.3). �

Définition 2.2. Étant donné deux sous-ensembles A et B d’un espace vectoriel topolo-

gique, on dit que A est fermé par rapport à B si A ∩ B = A ∩ B.
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Définition 2.3. Soit X un e.v.t et f : X −→ R, une fonction, on appelle enveloppe semi-

continue inférieure de f , le supremum des minorantes s.c.i de f ; on la note par f .

Propriété 2.1 ([69]). On a :

f (x) = ϕepi f (x),

où pour toute partie A de X × R, la fonction ϕA : X −→ R est définie par

ϕA(x) = inf{t : (x, t) ∈ A}.

On utilisera dans la suite les notations suivantes :

(i) Si A est un sous-ensemble d’un espace vectoriel topologique X. On note A
ω

la

fermeture de A par rapport à la topologie faible σ(X, X∗) de X. On écrit que A est

ω-fermé pour dire que A est faiblement fermé par rapport à la topologie σ(X, X∗).

(ii) Si B est un sous-ensemble de X∗, on note B
ω∗

la fermeture de B par rapport à la

topologie faible ∗ σ(X∗, X) de X∗. On écrit que B est ω∗-fermé pour signifier que B

est faiblement fermé par rapport à la topologie σ(X∗, X).

Le résultat suivant généralise le Théorème 9.1 de [15] dans le cas d’espaces topologiques

localement convexes non nécessairement séparés.

Théorème 2.5. Soient X et Y deux e.v.t.l.c, F : X × Y −→ R une fonction convexe s.c.i

propre et A un sous-ensemble non vide de X∗. Supposons que 0Y ∈ PrY(dom(F)). Alors

les assertions suivantes sont équivalentes :

(i) −∞ < sup
x∈X
{〈x∗, x〉 − F(x, 0Y)} = min

y∗∈Y∗
F∗(x∗, y∗) ≤ +∞, ∀x∗ ∈ A,

(ii) PrX∗×R(epiF∗) est ω∗-fermé par rapport à l’ensemble A × R.

Pour la preuve de ce théorème, nous aurons besoin du lemme suivant.

Lemme 2.8 ([31]). Soit f : U −→ R une fonction convexe sur un e.v.t.l.c U. Suppo-

sons que f est minorée par une forme affine continue. Alors l’enveloppe semi-continue

inférieure f de f coı̈ncide avec la biconjuguée f ∗∗ de f .

Preuve du Théorème 2.5.

Soit la fonction convexe k : X∗ −→ R définie par

k(x∗) = inf
y∗∈Y∗

F∗(x∗, y∗).
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Pour tout x ∈ X,

k∗(x) = sup
x∗∈X∗
{〈x∗, x〉 − inf

y∗∈Y∗
F∗(x∗, y∗)}

= sup
x∗∈X∗,y∗∈Y∗

{〈x∗, x〉 − F∗(x∗, y∗)}

=F∗∗(x, 0Y).

Comme F est convexe s.c.i et propre alors F(x, 0Y) = F∗∗(x, 0Y) = k∗(x). Par conséquent

k∗ est propre et admet donc une minorante affine continue. En appliquant le Lemme 2.8 à

la fonction k, on obtient k
ω∗

= k∗∗.

Comme epik
ω∗

= epik
ω∗

, il en résulte que epik
ω∗

= PrX∗×R(epiF∗)
ω∗

.

Supposons que (i) est vérifiée.

Soit (x∗, r) ∈ (A × R) ∩ PrX∗×R(epiF∗)
ω∗

, on a k∗∗(x∗) ≤ r. Par ailleurs

k∗∗(x∗) = sup
x∈X
{〈x∗, x〉 − k∗(x)}

= sup
x∈X
{〈x∗, x〉 − F(x, 0Y)}

= min
y∗∈Y∗

F∗(x∗, y∗) (d’après (i)).

Il existe y∗ ∈ Y∗ tel que F∗(x∗, y∗) ≤ r ce qui signifie que

(x∗, r) ∈ (A × R) ∩ PrX∗×R(epiF∗),

d’où

(A × R) ∩ PrX∗×R(epiF∗)
ω∗

⊂ (A × R) ∩ PrX∗×R(epiF∗) ⊂ (A × R) ∩ PrX∗×R(epiF∗)
ω∗

.

On en déduit donc l’égalité

(A × R) ∩ PrX∗×R(epiF∗)
ω∗

= (A × R) ∩ PrX∗×R(epiF∗).

Supposons que (ii) est vraie et soit x∗ ∈ A.

Puisque 0Y ∈ PrY(dom(F)) alors

sup
x∈X
{〈x∗, x〉 − F(x, 0Y)} > −∞.

Si

sup
x∈X
{〈x∗, x〉 − F(x, 0Y)} = +∞,

en remarquant que pour tout (x, y∗) ∈ X × Y∗, on a

〈x∗, x〉 − F(x, 0Y) ≤ F∗(x∗, y∗),
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on en déduit que pour tout y∗ ∈ Y∗, F∗(x∗, y∗) = +∞ et donc

min
y∗∈Y∗

F∗(x∗, y∗) = +∞.

Étudions maintenant le cas où

r := sup
x∈X
{〈x∗, x〉 − F(x, 0Y)} ∈ R.

Dans ce cas, (x∗, r) ∈ (epik∗∗) ∩ (A × R) = (epik
ω∗

) ∩ (A × R) ce qui signifie que

(x∗, r) ∈ PrX∗×R(epiF∗)
ω∗

∩ (A × R).

Comme (ii) est vérifiée, alors

(x∗, r) ∈ (PrX∗×R(epiF∗)) ∩ (A × R).

Il existe donc y∗ ∈ Y∗ tel que

F∗(x∗, y∗) ≤ r,

ce qui donne

inf
y∗∈Y∗

F∗(x∗, y∗) ≤ F∗(x∗, y∗) ≤ r ≤ inf
y∗∈Y∗

F∗(x∗, y∗).

Ainsi,

r = min
y∗∈Y∗

F∗(x∗, y∗).

�

Nous donnons maintenant un résultat qui généralise la condition de qualification d’Attouch-

Brézis relative à la stabilité dans les espaces de Banach.

Nous commençons par rappeler la notion de fonction quasi-continue introduite par Joly-

Laurent dans [40] et utilisée par Moussaoui-Volle dans [48].

Définition 2.4 ([48]). Soit U un e.v.t.l.c. Une fonction convexe f : U −→ R est dite

quasi-continue si :

(i) l’enveloppe affine aff(dom( f )) du domaine effectif de f est fermée et de codimen-

sion finie,

(ii) l’intérieur algébrique relatif du domaine effectif dom( f ) de f est non vide et la

restriction de f à aff(dom( f )) est continue sur l’intérieur algébrique (dom( f ))i du

domaine de f .

47
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Théorème 2.6 ([48]). Soient X et Y deux e.v.t.l.c séparés et F : X ×Y −→ R une fonction

convexe. Supposons qu’il existe x0 ∈ X tel que F(x0, .) : Y −→ R soit quasi-continue et

R+PrY(dom(F)) est un sous-espace vectoriel de Y. Alors, pour tout x∗ ∈ X∗, on a :

−∞ < sup
x∈X
{〈x∗, x〉 − F(x, 0Y)} = min

y∗∈Y∗
F∗(x∗, y∗) ≤ +∞.

Théorème 2.7. Soient X et Y, deux espaces de Banach et F : X × Y −→ R une fonction

convexe s.c.i et propre. Supposons que

R+PrY(dom(F)) est un sous-espace vectoriel fermé. (2.11)

Alors pour tout x∗ ∈ X∗,

−∞ < sup
x∈X
{〈x∗, x〉 − F(x, 0Y)} = min

y∗∈Y∗
F∗(x∗, y∗) ≤ +∞.

Preuve.

Soit x∗ ∈ X∗, on considère la fonction convexe Φ : X × Y −→ R définie par

Φ(x, y) = F(x, y) − 〈x∗, x〉. Observons que dom(Φ) = dom(F) et R+PrY(dom(F)) est un

sous-espace vectoriel fermé si et seulement si 0Y ∈ (PrY(dom(Φ)))ri. La conclusion résulte

du [69, Théorème 2.7.1, (vii)]. �

La condition de qualification d’Attouch-Brezis [1, Theorem 1.1] est⋃
λ≥0

λ(dom( f ) − dom(g)) est un sous-espace vectoriel fermé (2.12)

où f et g sont deux fonctions convexes s.c.i.

On peut donc observer que la condition de qualification d’Attouch-Brezis [1, Theorem

1.1] est un cas particulier de la condition (2.11).

2.2.2 Version duale des résultats de stabilité

Dans cette sous-section, nous donnons la version duale des résultats précédents dans les

e.v.t.l.c.s. On note e.v.t.H.l.c pour dire que l’e.v.t.l.c est séparé. On rappelle que τ(X∗, X)

est la topologie de Mackey qui est la plus fine topologie pour laquelle les formes linéaires

〈., x〉, x ∈ X sont continues sur X∗.

Théorème 2.1’. Soient X un e.v.t.H.l.c, Y un e.v.t.l.c et F : X × Y −→ R une fonction

convexe s.c.i propre.

Si la condition suivante est vérifiée

∃ t ∈ R : intτ(X∗,X)(PrX∗[F∗ ≤ t]) , ∅. (2.13)
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Alors, soit

max
x∈X
{〈x∗, x〉 − F(x, 0Y)} = inf

y∗∈Y∗
F∗(x∗, y∗) ∈ R, ∀x∗ ∈ intτ(X∗,X)(PrX∗(dom(F∗))),

soit

−F(x, 0Y) = inf
y∗∈Y∗

F∗(x∗, y∗) = −∞, ∀x∗ ∈ intτ(X∗,X)(PrX∗(dom(F∗))) et ∀x ∈ X.

Preuve.

Comme

F ∈ Γ0(X × Y)⇐⇒ F∗∗ = F,

on applique alors le Théorème 2.1 à F∗ pour conclure. �

Théorème 2.2’. Soient X un e.v.t.H.l.c, Y un e.v.t.l.c, F : X × Y −→ R une fonction

convexe s.c.i et propre et W = vectτ(X∗,X)(PrX∗(dom(F∗))) l’espace vectoriel engendré par

PrX∗(dom(F∗)) dans X∗ relativement à la topologie de Mackey. Supposons que la condition

suivante soit vérifiée :

∃t ∈ R : intW(PrX∗(F∗ ≤ t)) , ∅. (2.14)

Alors, soit

max
x∈X
{〈x∗, x〉 − F(x, 0Y)} = inf

y∗∈Y∗
F∗(x∗, y∗) ∈ R, ∀x∗ ∈ intW(PrX∗(dom(F∗))),

soit

−F(x, 0Y) = inf
y∗∈Y∗

F∗(x∗, y∗) = −∞, ∀x∗ ∈ intW(PrX∗(dom(F∗))) et ∀x ∈ X.

Preuve.

Il suffit d’utiliser l’hypothèse (2.14) et appliquer le Lemme 2.7 à la fonction convexe h∗

définie par h(x∗) = inf
x∗∈X∗

F∗(x∗, y∗). �

Théorème 2.3’. Soient X un e.v.t.H.l.c, Y un espace de Banach réflexif, F : X × Y −→ R

une fonction convexe s.c.i et propre et �Y∗ la boule unité fermée de Y∗. Supposons que :

∃t ∈ R, r > 0 : intτ(X∗,X)(PrX∗([F∗ ≤ t] ∩ (X∗ × r�Y∗))) , ∅. (2.15)

Alors, pour chaque y ∈ Y,

soit

max
x∈X
{〈x∗, x〉−F(x, y)} = inf

y∗∈Y∗
{F∗(x∗, y∗)−〈y∗, y〉} ∈ R, ∀x∗ ∈ intτ(X∗,X)(PrX∗(dom(F∗))),
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soit

−F(x, y) = inf
y∗∈Y∗
{F∗(x∗, y∗)− 〈y∗, y〉} = −∞, ∀x∗ ∈ intτ(X∗,X)(PrX∗(dom(F∗))) et ∀x ∈ X.

Preuve.

Comme Y est de Banach reflexif alors on peut identifier Y à son bidual et comme F est

convexe s.c.i et propre, alors F = F∗∗ et on applique le Théorème 2.3 à la fonction F∗

pour conclure. �

Théorème 2.4’. Soient X un e.v.t.H.l.c, Y un espace de Banach réflexif, F : X × Y −→ R

une fonction convexe s.c.i et propre,�Y∗ la boule unité fermée de Y∗ et W = vectτ(X∗,X)(PrX∗(dom(F∗)))

l’espace vectoriel engendré par PrX∗(dom(F∗)). Supposons que :

∃t ∈ R, r > 0 : intW(PrX∗([F∗ ≤ t] ∩ (X∗ × r�Y∗))) , ∅. (2.16)

Alors, pour chaque y ∈ Y,

soit

max
x∈X
{〈x∗, x〉 − F(x, y)} = inf

y∗∈Y∗
{F∗(x∗, y∗) − 〈y∗, y〉} ∈ R, ∀x∗ ∈ intW(PrX∗(dom(F∗))),

soit

−F(x, y) = inf
y∗∈Y∗
{F∗(x∗, y∗) − 〈y∗, y〉} = −∞, ∀x∗ ∈ intW(PrX∗(dom(F∗))) et ∀x ∈ X.

Preuve.

On applique le Lemme 2.7 à la fonction hy définie par

hy(x∗) = inf
y∗∈Y∗
{F∗(x∗, y∗) − 〈y, y∗〉}

et on obtient le résultat. �

Théorème 2.5’. Soient X et Y deux e.v.t.l.c et F : X × Y −→ R une fonction convexe s.c.i

et propre. Supposons que 0X∗ ∈ PrX∗(dom(F∗)). Alors pour tout sous-ensemble non vide B

de Y les assertions suivantes sont équivalentes :

(i) −∞ < sup
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = min

x∈X
F(x, y) ≤ +∞, ∀y ∈ B,

(ii) PrY×R(epiF) est fermé par rapport à l’ensemble B × R.

Preuve.

Pour la preuve, on applique le Théorème 2.5 à la fonction F∗ en lieu et place de F. �
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Théorème 2.6’. Soient X et Y deux e.v.t.H.l.c et F : X × Y −→ R une fonction convexe

s.c.i et propre. Supposons que

∃y∗0 ∈ Y∗ :


F∗(., y∗0) est τ(X∗, X) − quasi-continue

(R+PrX∗(dom(F∗)))
ω∗

est un sous-espace vectoriel.

(2.17)

Alors, pour tout y ∈ Y, on a :

−∞ < sup
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = min

x∈X
F(x, y) ≤ +∞.

Preuve.

Pour la preuve, on applique le Théorème 2.6 à la fonction F∗ en lieu et place de F. �

Remarque 2.4. (2.17)⇐⇒ ∃y∗0 ∈ Y∗ : (F∗(., y∗0))∗ est ω-inf-localement compact.

Théorème 2.7’. Soient X,Y deux espaces de Banach réflexifs et F : X×Y −→ R une fonc-

tion convexe s.c.i et propre. Supposons que R+PrX∗(dom(F∗)) est un sous-espace vectoriel

ω∗-fermé. Alors, pour tout y ∈ Y , on a :

−∞ < sup
y∗∈Y∗
{〈y∗, y〉 − F∗(0X∗ , y∗)} = min

x∈X
F(x, y) ≤ +∞.

Preuve.

Notons qu’on identifie X et Y à leur bidual et que la fonction F∗ vérifie les hypothèses

du Théorème 2.7. On applique alors le Théorème 2.7 à F∗ en lieu et place de F pour

conclure. �

2.3 Dualité pour la minimisation du maximum de deux
fonctions convexes

Le problème de minimisation du maximum de deux fonctions apparaı̂t dans plusieurs

domaines d’applications, parmi lesquelles on peut citer l’algèbre des ensembles flous,

la minimisation du coût de production, la maximisation d’une fonction d’utilité, etc. La

stabilité de ce problème apparaı̂t dans [64] et [65]. Dans cette section nous étendons cette

propriété de stabilité.

Soient X un espace vectoriel topologique, f et g : X −→ R deux fonctions convexes

propres. Pour un besoin de clarté on note par la suite Y = X. La fonction objectif du

problème (Py) est F : X × Y −→ R définie par

F(x, y) = max( f (x + y), g(x)), ∀(x, y) ∈ X × Y.
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Ainsi on se ramène à l’étude du problème paramétrique suivant :

minimiser max( f (x + y), g(x)), s.l.c x ∈ X. (Py)

Propriété 2.2. La fonction F vérifie les propriétés suivantes :

(i) la fonction F est convexe,

(ii) pour tout t ∈ R, on a

PrY([F ≤ t]) = [ f ≤ t] − [g ≤ t], (2.18)

(iii) on a l’égalité suivante :

PrY(dom(F)) = dom( f ) − dom(g), (2.19)

(iv) on a l’équivalence suivante :

y ∈ dom( f ) − dom(g)⇐⇒ inf (Py) < +∞. (2.20)

Preuve.

(i) F est convexe en tant que maximum de deux fonctions convexes.

(ii)

y ∈ PrY([F ≤ t])⇐⇒ ∃x ∈ X : F(x, y) ≤ t

⇐⇒ ∃x ∈ X :


f (x + y) ≤ t

g(x) ≤ t

⇐⇒ ∃x ∈ X :


x + y ∈ [ f ≤ t]

x ∈ [g ≤ t]

⇐⇒ y ∈ [ f ≤ t] − [g ≤ t].

(iii)

y ∈ PrY(dom(F))⇐⇒ ∃x ∈ X : F(x + y) < +∞

⇐⇒ ∃x ∈ X :


f (x + y) < +∞

g(x) < +∞

⇐⇒ y ∈ dom( f ) − dom(g).
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(iv) y ∈ dom( f ) − dom(g)⇐⇒ ∃x ∈ X : F(x, y) < +∞ ⇐⇒ inf (Py) < +∞.

�

Notons ∆2 le simplexe de R2 défini par

∆2 = {(λ, µ) ∈ R2 | λ ≥ 0, µ ≥ 0 et λ + µ = 1}.

Pour tout a, b ∈ R, on vérifie sans peine que :

max(a, b) = max
(λ,µ)∈∆2

{λa + µb}. (2.21)

On déduit de (2.21) une expression simplifiée de la conjuguée de F, qui nous permettra

d’écrire le dual perturbationnel de (Py).

Propriété 2.3. Pour tout x∗ ∈ X∗, y∗ ∈ Y∗, on a :

F∗(x∗, y∗) = min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)}. (2.22)

Preuve.

Pour tout (x∗, y∗) ∈ X∗ × Y∗, on a :

−F∗(x∗, y∗) = inf
(x,y)∈X×Y

{max{ f (x + y), g(x)} − 〈x∗, x〉 − 〈y∗, y〉}

= inf
(x,z)∈X×Y

{max{ f (z), g(x)} − 〈x∗, x〉 − 〈y∗, z − x〉}

= inf
(x,z)∈dom( f )×dom(g)

{max{ f (z), g(x)} − 〈x∗, x〉 − 〈y∗, z − x〉}

= inf
(x,z)∈dom( f )×dom(g)

{
max

(λ,µ)∈∆2
{λ f (z) + µg(x)} − 〈x∗, x〉 − 〈y∗, z − x〉

}
= inf

(x,z)∈dom( f )×dom(g)

{
max

(λ,µ)∈∆2
{λ f (z) − 〈y∗, z〉 + µg(x) − 〈x∗ − y∗, x〉}

}
.

Soit la fonction ϕ : dom( f ) × dom(g) −→ R définie par

ϕ((λ, µ), (x, z)) = λ f (z) − 〈y∗, z〉 + µg(x) − 〈x∗ − y∗, x〉.

Pour tout (x, z) ∈ dom( f ) × dom(g), ϕ(., (x, z)) est concave et s.c.s car affine.

Pour tout (λ, µ) ∈ ∆2, ϕ((λ, µ), .) est convexe en tant que somme de fonctions convexes.

Comme le simplexe ∆2 est un compact de R2, le Théorème MiniMax de Maurice Sion

[60, Théorème 4.2’] donne :

−F∗(x∗, y∗) = max
(λ,µ)∈∆2

{
inf

(x,z)∈dom( f )×dom(g)
{λ f (z) − 〈y∗, z〉 + µg(x) − 〈x∗ − y∗, x〉}

}
.
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Ainsi,

F∗(x∗, y∗) = min
(λ,µ)∈∆2

{
sup

(x,z)∈dom( f )×dom(g)
{〈y∗, z〉 − λ f (z) + 〈x∗ − y∗, x〉 − µg(x)}

}
= min

(λ,µ)∈∆2
{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)}.

�

Le problème dual associé au problème (Py) peut donc s’écrire comme suit :

Maximiser 〈y∗, y〉 − min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(−y∗)}, s.l.c y∗ ∈ Y∗. (Dy)

Théorème 2.8. Supposons que :

∃t ∈ R : int([ f ≤ t] − [g ≤ t]) , ∅. (2.23)

Alors, soit

max
y∗∈Y∗
{〈y∗, y〉 − min

(λ,µ)∈∆2
{(λ f )∗(y∗) + (µg)∗(−y∗)}} = inf

x∈X
max( f (x + y), g(y)),

∀y ∈ int(dom( f ) − dom(g)),

soit

−∞ = inf
x∈X

max( f (x + y), g(x)) = − min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(−y∗)},

∀y ∈ int(dom( f ) − dom(g)) et ∀y∗ ∈ Y∗.

Preuve.

D’après la Propriété 2.2, (ii) PrY([F ≤ t]) = [ f ≤ t] − [g ≤ t] et donc la condition (2.23)

est équivalente à la condition (2.4). La convexité de F permet de conclure à l’aide du

Théorème 2.1. �

Considérons X Hausdorff, alors on obtient la version duale du Théorème 2.8.

Théorème 2.8’. Soient X un e.v.t.H.l.c, f et g : X −→ R deux fonctions convexes s.c.i

et propres telles que dom( f ) ∩ dom(g) , ∅. Supposons que

∃t ∈ R : intτ(X∗,X)

 ⋃
(λ,µ)∈∆2,t1+t2=t

([(λ f )∗ ≤ t1] + [(µg)∗ ≤ t2])

 , ∅. (2.24)

Alors, on a :

soit

max
x∈X
{〈x∗, x〉 −max( f (x), g(x))} = inf

y∗∈X∗
min

(λ,µ)∈∆2
{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)},

∀x∗ ∈ intτ(X∗,X)

 ⋃
(λ,µ)∈∆2

dom((λ f )∗) + dom((µg)∗)

 ,
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soit

−max( f (x), g(x)) = inf
y∗∈X∗

min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)} = −∞,

∀x∗ ∈ intτ(X∗,X)

 ⋃
(λ,µ)∈∆2

dom((λ f )∗) + dom((µg)∗)

 et ∀x ∈ X.

Preuve.

- Montrons que

PrX∗([F∗ ≤ t]) =
⋃

(λ,µ)∈∆2,t1+t2=t

([(λ f )∗ ≤ t1] + [(µg)∗ ≤ t2]).

On a,

x∗ ∈ PrX∗([F∗ ≤ t])⇐⇒ ∃y∗ ∈ Y∗ : F∗(x∗, y∗) ≤ t

⇐⇒ ∃y∗ ∈ Y∗ : min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)} ≤ t

⇐⇒ ∃y∗ ∈ Y∗,∃(λ, µ) ∈ ∆2 : (λ f )∗(y∗) + (µg)∗(x∗ − y∗) ≤ t

⇐⇒ ∃y∗ ∈ Y∗,∃(λ, µ) ∈ ∆2,∃t1, t2 ∈ R :



t1 + t2 = t

(λ f )∗(y∗) ≤ t1

(µg)∗(x∗ − y∗) ≤ t2

⇐⇒ ∃(λ, µ) ∈ ∆2,∃t1, t2 ∈ R :


t1 + t2 = t

x∗ ∈ [(λ f )∗ ≤ t1] + [(µg)∗ ≤ t2]

⇐⇒ x∗ ∈
⋃

(λ,µ)∈∆2,t1+t2=t

([(λ f )∗ ≤ t1] + [(µg)∗ ≤ t2]).

- Montrons que

PrX∗(dom(F∗)) =
⋃

(λ,µ)∈∆2

(dom((λ f )∗) + dom((µg)∗)).

On a,

x∗ ∈ PrX∗1
(dom(F∗))⇐⇒ ∃y∗ ∈ Y∗ : F∗(x∗, y∗) < +∞

⇐⇒ ∃y∗ ∈ Y∗,∃(λ, µ) ∈ ∆2 : (λ f )∗(y∗) + (µg)∗(x∗ − y∗) < +∞

⇐⇒ ∃y∗ ∈ Y∗,∃(λ, µ) ∈ ∆2 : y∗ ∈ dom((λ f )∗) et x∗ − y∗ ∈ dom((µg)∗)

⇐⇒ x∗ ∈ dom((λ f )∗) + dom((µg)∗).
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Puisque dom( f ) ∩ dom(g) , ∅, on conclut à l’aide du Théorème 2.1’. �

Remarque 2.5. La condition (2.24) est vérifiée dans le cas particulier où une des fonctions

f ∗ ou g∗ est s.c.s en un certain point de X∗.

Théorème 2.9. Supposons que X est un e.v.t.l.c. Si f et g sont deux fonctions convexes s.c.i

propres telles que dom( f )∩ dom(g) , ∅ alors les assertions suivantes sont équivalentes :

(i) −∞ < sup
x∈X
{〈x∗, x〉−max( f (x), g(x))} = min

(λ,µ)∈∆2
{(λ f )∗(x∗1)+(µg)∗(x∗2) : x∗1+x∗2 = x∗} ≤ +∞,

∀x∗ ∈ X∗.

(ii) L’ensemble
⋃

(λ,µ)∈∆2

(epi(λ f )∗ + epi(µg)∗) est ω∗-fermé.

Preuve.

Montrons que

PrX∗×R(epiF∗) =
⋃

(λ,µ)∈∆2

(
epi(λ f )∗ + epi(µg)∗

)
.

Notons que la fonction F : X × Y −→ R est définie par

F(x, y) = max( f (x + y), g(x)), ∀(x, y) ∈ X × Y

et que sa transformée de Fenchel F∗ est définie par

F∗(x∗, y∗) = min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)}, ∀(x∗, y∗) ∈ X∗ × Y∗.

(x∗, r) ∈ PrX∗×R(epiF∗)⇐⇒ ∃y∗ ∈ X∗ : F∗(x∗, y∗) ≤ r

⇐⇒ ∃y∗ ∈ X∗,∃(λ, µ) ∈ ∆2 : (λ f )∗(y∗) + (µg)∗(x∗ − y∗) ≤ r

⇐⇒ ∃y∗ ∈ X∗,∃(λ, µ) ∈ ∆2,∃ r1, r2 ∈ R :



r1 + r2 = r

(λ f )∗(y∗) ≤ r1

(µg)∗(x∗ − y∗) ≤ r2

⇐⇒ ∃y∗ ∈ X∗,∃(λ, µ) ∈ ∆2,∃ r1, r2 ∈ R :



r1 + r2 = r

(y∗, r1) ∈ epi(λ f )∗

(x∗ − y∗, r2) ∈ epi(µg)∗

⇐⇒ ∃(λ, µ) ∈ ∆2 :
{
(x∗, r) ∈ epi(λ f )∗ + epi(µg)∗

⇐⇒ (x∗, r) ∈
⋃

(λ,µ)∈∆2

(epi(λ f )∗ + epi(µg)∗).

On conclut à l’aide du Théorème 2.5 appliqué à la fonction F. �
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Dans le but de donner la version duale du Théorème 2.9, rappelons la définition de la

somme inverse de deux sous-ensembles de X × R.

Définition 2.5. Soient deux sous-ensembles M et N de X × R, la somme inverse de M et

N est le sous-ensemble de X × R noté et défini par

M ⊥ N = {(x + y, r) ∈ X × R | (x, r) ∈ M et (y, r) ∈ N}.

Théorème 2.9’. Soient X un e.v.t.H.l.c, f et g : X −→ R deux fonctions convexes s.c.i

propres telles que

0X∗ ∈
⋃

(λ,µ)∈∆2

(dom((λ f )∗) + dom((µg)∗)).

Alors pour tout sous-ensemble non vide B de X, les assertions suivantes sont équivalentes :

(i) −∞ < sup
y∗∈X∗

{
〈y∗, y〉 − min

(λ,µ)∈∆2
{(λ f )∗(y∗) + (µg)∗(−y∗)}

}
= min

x∈X
max( f (x + y), g(x)) ≤ +∞,

∀y ∈ B.

(ii) epi f ⊥ epig est fermé par rapport à B × R,

où g : X −→ R est la fonction définie par g(x) = g(−x), ∀x ∈ X.

Preuve.

En considérant la fonction F définie par F(x, y) = max( f (x + y), g(x)), on a

0X∗ ∈
⋃

(λ,µ)∈∆2

(dom((λ f )∗) + dom((µg)∗))

équivaut à

0X∗ ∈ PrX∗dom(F∗).

De plus,

PrY×R(epiF) = {(y, r) ∈ Y × R : ∃x ∈ X, f (x + y) ≤ r et g(x) ≤ r}

= {(y, r) ∈ Y × R | ∃x = −v, ∃u = x + y, f (u) ≤ r , g(−v) ≤ r et u + v = y}

= epi f ⊥ epig.

On applique le Théorème 2.5’ pour obtenir le résultat cherché. �

Nous étudions maintenant le problème de minimisation du maximum de deux fonctions

convexes dans le cas d’espace vectoriel normé.

Théorème 2.10. Soient X un e.v.n, f et g : X = Y −→ R deux fonctions convexes.

Supposons que

∃r > 0, t ∈ R : int([ f ≤ t] − [g ≤ t] ∩ r�X) , ∅. (2.25)
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2.3. DUALITÉ POUR LA MINIMISATION DU MAXIMUM DE DEUX FONCTIONS CONVEXES

Pour tout x∗ ∈ X∗, on a soit

max
(λ,µ)∈∆2,y∗∈X∗

{〈y∗, y〉 − (λ f )∗(y∗) − (µg)∗(x∗ − y∗)} = inf
x∈X
{max( f (x + y), g(x)) − 〈x∗, x〉} ∈ R,

∀y ∈ int(dom( f ) − dom(g)),

soit

− min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)} = inf
x∈X
{max( f (x + y), g(x)) − 〈x∗, x〉} = −∞,

∀y ∈ int(dom( f ) − dom(g)) et ∀y∗ ∈ X∗.

Preuve.

Il suffit de montrer que

PrY([F ≤ t] × (r�X × X)) = [ f ≤ t] − [g ≤ t] ∩ r�X.

En effet,

y ∈ PrY([F ≤ t] × (r�X × X))⇐⇒ ∃x ∈ X :



f (x + y) ≤ t

g(x) ≤ t

‖x‖ ≤ r

⇐⇒ ∃x ∈ X :


x + y ∈ [ f ≤ t]

x ∈ [g ≤ t] ∩ r�X

⇐⇒ y ∈ [ f ≤ t] − [g ≤ t] ∩ r�X.

Par suite, on a bien

PrY([F ≤ t] × (r�X × X)) = [ f ≤ t] − [g ≤ t] ∩ r�X.

On déduit le résultat en utilisant le Théorème 2.3. �

Remarque 2.6. D. Azé [2] a obtenu une expression plus simple de la conjuguée de

Legendre-Fenchel de la somme de deux fonctions convexes grâce à la condition

∃r′ > 0, t ∈ R : int([ f ≤ t] ∩ r′�X − [g ≤ t] ∩ r′�X) , ∅

qui est en faite équivalente à la condition

∃r > 0, t ∈ R : int([ f ≤ t] − [g ≤ t] ∩ r�X) , ∅.
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Théorème 2.11. Soit X un espace de Banach, f et g : X −→ R deux fonctions convexes

s.c.i propres telles que R+(dom( f ) − dom(g)) soit un sous-espace fermé. Alors pour tout

x∗ ∈ X∗, on a

−∞ < sup
x∈X
{〈x∗, x〉 −max( f (x), g(x))} = min

(λ,µ)∈∆2,x∗1+x∗2=x∗
{(λ f )∗(x∗1) + (µg)∗(x∗2)} ≤ +∞.

Preuve.

On procède de manière analogue qu’au niveau de la preuve du Théorème 2.7 en prenant

F(x, y) = max( f (x), g(x)). �

Remarque 2.7. Si on prend x∗ = 0X∗ et on suppose que dom( f ) ∩ dom(g) , ∅ dans le

Théorème 2.11, on obtient un résultat de Traoré-Volle [65, Théorème 7.1].

Si X est réflexif on obtient la version duale du Théorème 2.11.

Théorème 2.11’ Soient X un espace de Banach réflexif, f et g : X −→ R deux fonc-

tions convexes s.c.i propres telles que

R+

⋃
(λ,µ)∈∆2

(dom((λ f )∗) + dom((µg)∗))

est un sous-espace vectoriel ω∗-fermé. Alors, pour tout y ∈ X, on a

−∞ < sup
y∗∈X∗

{
〈y∗, y〉 − min

(λ,µ)∈∆2
{(λ f )∗(y∗) + (µg)∗(−y∗)}

}
= min

x∈X
max( f (x + y), g(x)) ≤ +∞.

Preuve.

On applique le Théorème 2.7’ à la fonction F∗ définie par

F∗(x∗, y∗) = min
(λ,µ)∈∆2

{(λ f )∗(y∗) + (µg)∗(x∗ − y∗)}. �

Pour terminer ce chapitre nous donnons un exemple qui motive le fait de considérer le

problème de minimisation du maximum de deux fonctions convexes.

Exemple 2.1. Comme exemple de problème de minimisation du maximum de deux fonc-

tions nous pouvons citer la somme en niveaux de deux fonction notée 4 et définie par :

Étant donné deux fonctions f et g à valeurs réelles définies sur un R-espace vectoriel X,

on appelle somme en niveaux de f et g la fonction f4g : X −→ R définie par

[ f4g](x) := inf
v∈X
{ f (x − v) ∨ g(v)}, ∀x ∈ X.
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Pour tout y ∈ Y = X, on a

[ f4g](y) = inf
x∈X
{ f (y − x) ∨ g(x)}

= inf
x∈X
{ f (x + y) ∨ g(x)},

où g(x) = g(−x).

Il apparaı̂t donc que la somme en niveaux est la fonction valeur de la minimisation du

maximum des deux fonctions f et g. La somme en niveaux à plusieurs applications ([56]),

parmi lesquelles on peut citer :

- la fonction distance
Soit un e.v.n (X, ‖.‖), la distance d’un point y ∈ X à un sous-ensemble non vide

C ⊂ X est la fonction dC : X −→ R ∪ {+∞} définie par :

dC(y) := inf
x∈C
‖y − x‖.

La fonction distance dC est un cas particulier de la somme en niveaux. En effet,

dC(y) = [‖.‖ 4 iC](y), ∀y ∈ X.

- minimisation d’un coût de production
Considérons deux usines joyant leurs efforts pour produire un vecteur x ∈ Rn

+ de

biens. Si la première usine produit x1 ∈ R
n
+, on note C1(x1) son coût. De même,

C2(x2) représente le coût de production de x2 ∈ R
n
+ pour la seconde usine.

On cherche une stratégie optimale de production pour les deux usines. Une solution

consiste à trouver x1, x2 ∈ R
n
+ : x1 + x2 = x et qui minimise sur Rn

+ la fonction

(x1, x2) 7−→ C1(x1) ∨C2(x2).

Minimiser C1(x1) ∨C2(x2) s.l.c x1 + x2 = x, x1, x2 ∈ R
n
+. (2.26)

Moyennant une modification mineure, ceci correspond à un problème de somme en

niveaux. En effet, la valeur optimale du problème (2.26) est précisément [C14C2](x),

où

C1(xi) =


Ci(xi) si xi ∈ R

n
+

pour i = 1, 2.
+∞ sinon.

(2.27)
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CHAPITRE 3

Dualité robuste pour des problèmes d’optimisation
convexe conique à données incertaines

3.1 Introduction

Considérons le problème d’optimisation convexe conique incertain suivant :

inf
x

f (x) s.l.c gu(x) ∈ −S , (P)

où :

- u appartient à U, un ensemble incertain,

- X et Y sont deux espaces vectoriels topologiques Hausdorff localement convexe,

- f : X −→ R∪ {+∞} est une fonction convexe semi-continue inférieurement propre,

- S ⊂ Y est un cône convexe fermé non vide,

- pour chaque u ∈ U, la fonction gu : dom(gu) ⊂ X −→ Y est soit S -convexe fermée

par épigraphique ou soit S -convexe fermée par niveaux.

On associe au problème incertain (P) sa contrepartie robuste ([8], [9], [11]) définie par :

inf
x

f (x) s.l.c gu(x) ∈ −S , ∀u ∈ U. (RP)

La valeur de la contrepartie robuste inf (RP) est appelée valeur robuste du problème in-

certain (P).

Étant donné u ∈ U, une instance du problème (P) est donnée par :

inf
x

f (x) s.l.c gu(x) ∈ −S . (Pu)
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On introduit le problème qui consiste à maximiser sur U la fonction qui à u ∈ U associe

la valeur de (Pu) :

sup
u

inf
x
{ f (x) : gu(x) ∈ −S } s.l.c u ∈ U. (Q)

La valeur de (Q), sup (Q) est appelée la pire valeur du problème (P).

On observe que la pire valeur est une minorante de la valeur robuste et que l’inégalité

entre ces deux valeurs peut être stricte.

L’objectif de ce chapitre est de donner une condition nécessaire et suffisante permettant

d’obtenir l’égalité entre la valeur robuste et la pire valeur, avec exactitude de la pire valeur.

On déduit de cette propriété une condition suffisante permettant d’obtenir la propriété de

dualité forte robuste et on compare ce dernier résultat à celui de Jeyakumar, Li et Lee.

En établissant l’égalité entre la valeur robuste et la pire valeur, nous établissons la dualité

forte robuste du problème (P) ([6]).

3.2 Valeur robuste et pire valeur

Pour chaque u ∈ U, notons Fu l’ensemble admissible du problème (Pu) c’est-à-dire :

Fu = {x ∈ dom(gu) : gu(x) ∈ −S }.

Nous notons aussi

F = {x ∈ X : x ∈ dom(gu), gu(x) ∈ −S , ∀u ∈ U} =
⋂
u∈U

Fu,

l’ensemble admissible de la contrepartie robuste (RP).

Considérons la fonction p : X −→ R ∪ {+∞} définie par :

p = sup
u∈U

( f + iFu).

Propriété 3.1. La fonction p vérifie :

(i) p = f + iF ,

(ii) dom(p) = F ∩ dom( f ),

(iii) inf
X

p = inf (RP).
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Preuve.

On a :

(i) Pour tout x ∈ X,

p(x) = sup
u∈U

( f + iFu)(x)

= f (x) + sup
u∈U

iFu(x)

=


f (x) si x ∈ Fu, ∀u ∈ U

+∞ sinon

=


f (x) si x ∈

⋂
u∈U

Fu = F

+∞ sinon.

On conclut que p = f + iF .

(ii) On a :

dom(p) = {x ∈ X : f (x) + iF(x) < +∞} = F ∩ dom( f ).

(iii) Par définition du problème (RP)

inf (RP) = inf
x∈X
{ f (x) : gu(x) ∈ −S , ∀u ∈ U}

= inf
x∈X
{ f (x) : x ∈ F}

= inf
x∈X
{ f (x) + iF(x)}

= inf
x∈X

p(x).

�

Proposition 3.1. On a toujours l’inégalité :

sup (Q) ≤ inf (RP). (3.1)

Preuve.

En effet, on a :

sup (Q) = sup
u∈U

inf (Pu) = sup
u∈U

inf
x∈X

( f + iFu)(x) ≤ inf
x∈X

sup
u∈U

( f + iFu)(x) = inf(RP). �

Nous donnons un exemple de problème qui prouve que l’inégalité (3.1) peut être stricte.

Exemple 3.1. Considérons le problème d’optimisation convexe conique incertain sui-

vant :

minimiser (x1 + x2) s.l.c
1
2

[
(2 − u1)x2

1 + (1 + u2)x2
2

]
≤ 1, (P)
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avec (u1, u2) = (1, 2) ou (u1, u2) = ( 1
2 , 1). Dans cet exemple,

X = R2, f (x1, x2) = x1 + x2, Y = R, S = R+,

U =

{
(1, 2), (

1
2
, 1)

}
, gu(x1, x2) =

1
2

[
(2 − u1)x2

1 + (1 + u2)x2
2

]
− 1.

Soit u = (u1, u2) ∈ U, étudions le problème

min (x1 + x2) s.l.c gu(x1, x2) =
1
2

[(2 − u1)x2
1 + (1 + u2)x2

2] − 1 ≤ 0. (Pu)

- La fonction f est linéaire donc convexe.

- La hessienne de la fonction gu est

52gu(x) =

(
2 − u1 0

0 1 + u2

)
,

et est définie positive car ses valeurs propres sont strictement positives ; par conséquent

la fonction gu est convexe.

On déduit que les conditions nécessaires de minimalité de Karush-Kuhn-Tucker (KKT)

deviennent suffisantes.

Par ailleurs gu(0, 0) = −1 < 0, donc la condition de qualification de Slater est vérifiée.

Ainsi (x1, x2) est une solution optimale du problème (Pu) si et seulement si

(x1, x2) vérifie le système de KKT suivant : il existe λ ∈ R tel que

∇ f (x1, x2) + λ∇gu(x1, x2) = 0

λgu(x1, x2) = 0

gu(x1, x2) ≤ 0

λ ≥ 0

ce qui est équivalent à 

1 + λ(2 − u1)x1 = 0

1 + λ(1 + u2)x2 = 0

λgu(x1, x2) = 0

gu(x1, x2) ≤ 0

λ > 0,

64



3.2. VALEUR ROBUSTE ET PIRE VALEUR

car ∇ f (x1, x2) + λ∇gu(x1, x2) = 0 ce qui implique que λ , 0.

Par suite, 
x1 =

−1
λ(2 − u1)

x2 =
−1

λ(1 + u2)
et

gu(x1, x2) =
1
2

[
(2 − u1)

1
λ2(2 − u1)2 + (1 + u2)

1
λ2(1 + u2)2

]
− 1 = 0.

On en déduit que

λ =

√
1
2

(
1

2 − u1
+

1
1 + u2

)
.

Ainsi,

min (Pu) = f (x1, x2)

=x1 + x2

= −

√
2
(

1
2 − u1

+
1

1 + u2

)
.

D’où

min (Pu) =


−

√
8
3

si u = (1, 2)

−

√
7
3

si u = (
1
2
, 1).

Par conséquent,

max(Q) = max
u

min(Pu) = −

√
7
3
.

D’autre part, la contrepartie robuste du problème (P) est donnée par :

min (x1 + x2) s.l.c


x2

1 + 3x2
2 ≤ 2

3x2
1 + 4x2

2 ≤ 4.
(RP)

Notons g1(x1, x2) = x2
1 + 3x2

2 − 2 et g2(x1, x2) = 3x2
1 + 4x2

2 − 4.

g1(0, 0) = −2 < 0 et g2(0, 0) = −4 < 0 ; la condition de Slater est donc vérifiée.

(x1, x2) est une solution optimale du problème (RP) si et seulement si (x1, x2) vérifie le

système de KKT suivant :
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il existe λ1, λ2 ∈ R tels que

∇ f (x1, x2) + λ1∇g1(x1, x2) + λ2∇g2(x1, x2) = 0
λ1g1(x1, x2) = 0
λ2g2(x1, x2) = 0
g1(x1, x2) ≤ 0
g2(x1, x2) ≤ 0
λ1 ≥ 0, λ2 ≥ 0.

Il en résulte que 

1 + 2λ1x1 + 6λ2x1 = 0
1 + 6λ1x2 + 8λ2x2 = 0
λ1g1(x1, x2) = 0
λ2g2(x1, x2) = 0
λ1 > 0, λ2 > 0,

car si λ1 = 0, alors λ2 , 0 et g2(x1, x2) = 0 et par un calcul explicite x1 = − 4
√

21
21 ,

x2 = −
√

21
7 et g1(x1, x2) = 1

21 > 0, ce qui est absurde ; donc nécessairement λ1 , 0. De

même, on vérifie que λ2 , 0.

On en déduit alors que 

x1 =
−1

2λ1 + 6λ2

x2 =
−1

6λ1 + 8λ2

g1(x1, x2) = 0

g2(x1, x2) = 0.

Tout calcul fait, on trouve

x1 = −
2
√

5
et x2 = −

√
2
5
.

On a donc

min (RP) = f (x1, x2) = −
2 +
√

2
√

5
.

Par conséquent,

min (RP) = −
2 +
√

2
√

5
> −

√
7
3

= max(Q).

66



3.2. VALEUR ROBUSTE ET PIRE VALEUR

Considérons l’opposé du problème (Q), c’est-à-dire

inf
u

sup{− f (x) : gu(x) ∈ −S } s.l.c u ∈ U. (−Q)

La perturbation de la fonction objectif de (−Q) par l’addition d’une forme linéaire conti-

nue nous amène à considérer une fonction q : X∗ −→ R définie par :

q(x∗) = inf
u∈U

sup
x∈Fu

{〈x∗, x〉 − f (x)} = inf
u∈U

( f + iFu)
∗(x∗).

D’après la Propriété 1.11,

q∗ = sup
u∈U

( f + iFu)
∗∗

et comme

sup
u∈U

( f + iFu)
∗∗ ≤ sup

u∈U
( f + iFu) = p,

alors

q∗ ≤ p.

Par conséquent,

p∗ ≤ q∗∗ ≤ q.

Rappelons que Γ0(X) est l’ensemble des fonctions f : X −→ R convexes s.c.i propres.

Lemme 3.1 ([15]). Soient (hi)i∈I ⊂ Γ0(X), où I est un ensemble quelconque d’indices.

Supposons qu’il existe x ∈ X tel que sup
i∈I

hi(x) < +∞. Alors

epi
(
sup
i∈I

hi

)∗
= co

⋃
i∈I

epih∗i

 .
Considérons la condition suivante :

(H )


f ∈ Γ0(X)
F ∩ dom( f ) , ∅
gu est S -convexe fermée par niveaux,∀u ∈ U.

Lemme 3.2. Supposons que (H ) est vérifiée. Alors,

epip∗ = co

⋃
u∈U

epi( f + iFu)
∗

 .
Preuve.

Si (H ) est vérifiée alors f + iFu ∈ Γ0(X) pour tout u ∈ U et on a

q∗ = sup
u∈U

( f + iFu)
∗∗ = sup

u∈U
( f + iFu) = p.
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Par suite, dom(q∗) = F ∩ dom f , ∅ et donc il existe x ∈ F ∩ dom( f ) tel que

q∗(x) = sup
u∈U

( f + iFu)(x) < +∞.

En appliquant le Lemme 3.1 à la fonction q∗ = p, on obtient le résultat cherché. �

Définition 3.1. Étant donné deux sous-ensembles A et B d’un espace vectoriel topolo-

gique, on dit que A est convexe fermé par rapport à B si

co(A) ∩ B = A ∩ B.

Théorème 3.1. Supposons que (H ) est vérifiée. Alors, pour chaque x∗ ∈ X∗, les asser-

tions suivantes sont équivalentes :

(i) p∗(x∗) = min
u∈U

sup
x∈Fu

{〈x∗, x〉 − f (x)},

(ii)
⋃
u∈U

epi( f + iFu)
∗ est convexe ω∗-fermé par rapport à {x∗} × R.

Preuve.

Soit x∗ ∈ X∗, on a

p∗(x∗) = sup
x∈X
{〈x∗, x〉 − sup

u∈U
( f + iFu)(x)}.

Il en résulte que

p∗(x∗) ≥ 〈x∗, x〉 − sup
u∈U

( f + iFu)(x), ∀x ∈ X,

d’où

p∗(x∗) ≥ 〈x∗, x〉 − ( f + iF)(x), ∀x ∈ X.

Comme dom( f ) ∩ F , ∅ alors p∗(x∗) > −∞. On peut donc distinguer deux cas :

1er cas : p∗(x∗) = +∞ ; dans ce cas, montrons que (i) et (ii) sont toutes vraies et donc

équivalentes.

Comme p∗ ≤ q alors

q(x∗) = +∞ ⇐⇒
(
f + iFu

)∗ (x∗) = +∞, ∀u ∈ U.

D’où

p∗(x∗) = q(x∗) = min
u∈U

sup
x∈Fu

{〈x∗, x〉 − f (x)}.

Ainsi (i) est vraie.

D’après le Lemme 3.2, on a

epip∗
⋂(
{x∗} × R

)
= co

⋃
u∈U

epi( f + iFu)
∗

⋂(
{x∗} × R

)
= ∅,
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car p∗(x∗) = +∞.

Par conséquent⋃
u∈U

epi( f + iFu)
∗

⋂(
{x∗} × R

)
= co

⋃
u∈U

epi( f + iFu)
∗

⋂(
{x∗} × R

)
= ∅.

d’où (ii) est vérifiée.

2e cas : p∗(x∗) ∈ R.

Montrons que (ii) =⇒ (i).

En effet, on a :

(x∗, p∗(x∗)) ∈ epip∗
⋂(
{x∗} × R

)
= co

⋃
u∈U

epi( f + iFu)
∗

⋂(
{x∗} × R

)
.

Comme (ii) est vérifiée, alors

(x∗, p∗(x∗)) ∈

⋃
u∈U

epi( f + iFu)
∗

⋂(
{x∗} × R

)
.

Il existe donc u ∈ U tel que

(x∗, p∗(x∗)) ∈ epi( f + iFu)
∗,

ce qui implique que

( f + iFu)
∗(x∗) ≤ p∗(x∗).

Par définition de q, on a

q(x∗) = inf
u∈U

( f + iFu)
∗(x∗) ≤ ( f + iFu)

∗(x∗) ≤ p∗(x∗)

et comme p∗ ≤ q, on en déduit que

p∗(x∗) = min
u∈U

sup
x∈Fu

{〈x∗, x〉 − f (x)}, d’où (i).

Montrons que (i) =⇒ (ii).

Soit

(x∗, r) ∈ co

⋃
u∈U

epi( f + iFu)
∗

 ∩ (
{x∗} × R

)
.

D’après le Lemme 3.2, p∗(x∗) ≤ r et comme (i) est vérifiée alors il existe u ∈ U tel que

p∗(x∗) = ( f + iFu)
∗(x∗) ≤ r,

ce qui signifie que

(x∗, r) ∈ epi( f + iFu)
∗.
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D’où,

(x∗, r) ∈
⋃
u∈U

epi( f + iFu)
∗.

Il en résulte que

co

⋃
u∈U

epi( f + iFu)
∗

 ∩ ({x∗} × R) ⊂
⋃
u∈U

epi( f + iFu)
∗ ∩

(
{x∗} × R

)
;

par conséquent,

co

⋃
u∈U

epi( f + iFu)
∗

 ∩ (
{x∗} × R

)
=

⋃
u∈U

epi( f + iFu)
∗ ∩

(
{x∗} × R

)
, d’où (ii).

�

Corollaire 3.1. Supposons que (H ) est vérifiée. Alors les assertions suivantes sont équivalentes :

(i) −∞ ≤ max
u∈U

inf (Pu) = inf (RP) < +∞,

(ii)
⋃
u∈U

epi( f + iFu)
∗ est convexe ω∗-fermé par rapport à {0X∗} × R.

Preuve.

On a

p∗(0X∗) = sup
x∈X
{−( f + iF)(x)}

= − inf
x∈X
{( f + iF)(x)}.

Par conséquent ; p∗(0X∗) = − inf (RP), autrement dit −p∗(0X∗) = inf (RP).

En prenant x∗ = 0X∗ dans le Théorème 3.1, la condition (i) devient

p∗(0X∗) = min
u∈U

sup
x∈Fu

{− f (x)}

= min
u∈U

sup
x∈X
{− f (x) − iFu(x)}

= −max
u∈U

inf
x∈X
{ f (x) + iFu(x)}

= −max
u∈U

inf (Pu).

Autrement dit

−p∗(0X∗) = max
u∈U

inf (Pu).

Comme dom(p) , ∅ alors pour tout x∗ ∈ X∗,

−∞ < p∗(x∗) ≤ +∞,

donc

−∞ ≤ −p∗(x∗) < +∞.
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Ainsi, en utilisant l’égalité −p∗(0X∗) = inf (RP) on a

−∞ ≤ max
u∈U

inf (Pu) = inf (RP) < +∞.

Quant à l’assertion (ii) du Théorème 3.1, elle devient ”
⋃
u∈U

epi( f + iFu)
∗ est convexe

ω∗-fermé par rapport à {0X∗} × R”.

Par suite, on obtient l’équivalence entre (i) et (ii). �

Corollaire 3.2. Supposons que (H ) est vérifiée. Alors, les assertions suivantes sont

équivalentes :

(i) p∗(x∗) = min
u∈U

sup
x∈Fu

{〈x∗, x〉 − f (x)}, ∀x∗ ∈ X∗,

(ii)
⋃
u∈U

epi( f + iFu)
∗ est convexe ω∗-fermé.

Preuve.

Observons que pour tout sous-ensemble A ⊂ X∗ × R, on a :

A est convexe fermé dans X∗ × R si et seulement si A convexe fermé par rapport à

{x∗} × R, pour tout x∗ ∈ X∗.

En effet, si A est convexe fermé dans X∗ × R, alors pour tout x∗ ∈ X∗, on a :

co(A) ∩ ({x∗} × R) = A ∩ ({x∗} × R).

Inversement, si A est convexe fermé par rapport à {x∗} × R pour tout x∗ ∈ X∗, alors on a :

co(A) = co(A) ∩ (X∗ × R)

= co(A) ∩
( ⋃

x∗∈X∗
({x∗} × R)

)
=

⋃
x∗∈X∗

co(A) ∩ ({x∗} × R)

=
⋃

x∗∈X∗
A ∩ ({x∗} × R)

= A ∩ (X∗ × R) = A.

Avec cette précédente observation, (i) est équivalente à (ii) d’après le Théorème 3.1. �

On note par

S + = {λ ∈ Y∗ : 〈λ, y〉 ≥ 0, ∀y ∈ S },

le cône polaire positif de S .

Étant donné une fonction g : dom(g) ⊂ X −→ Y et λ ∈ S +, on note λg : X −→ R ∪ {+∞}
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la fonction définie par

λg(x) =


〈λ, g(x)〉 si x ∈ dom(g)

+∞ sinon.

Nous considérons la tranche de niveau y = 0Y de g que l’on note :

g−1(−S ) = {x ∈ dom(g) : g(x) ∈ −S }

et l’ensemble

Kg =
⋃
λ∈S +

epi(λg)∗,

qui peut être vu comme le cône caractéristique associé au système d’inégalités ([33])

{x ∈ dom(g) : λg(x) ≤ 0, ∀λ ∈ S +}.

Nous allons montrer sans aucune hypothèse de convexité sur g que l’ensemble Kg est un

cône convexe.

Propriété 3.2. Pour toute fonction g : dom(g) ⊂ X −→ Y tel que g−1(−S ) , ∅, on a :

(i) ig−1(−S ) = sup
λ∈S +

(λg),

(ii) Kg est un cône convexe.

Preuve.

Montrons d’abord (i).

Notons que

ig−1(−S )(x) =


0 si x ∈ g−1(−S )

+∞ sinon,

et distinguons deux cas.

- 1er cas : si x < g−1(−S ) c’est-à-dire ig−1(−S )(x) = +∞, alors g(x) < −S . d’après le

théorème de séparation de Hahn-Banach appliqué à {g(x)} et −S , il existe

(y∗, r) ∈ Y∗ × R tel que

〈y, y∗〉 < r < 〈g(x), y∗〉, ∀y ∈ −S .

Si on prend y = 0Y , il vient alors que r > 0 et donc y∗ ∈ S +. Par suite,

sup
λ∈S +

(λg)(x) ≥ 〈g(x), ny∗〉 > 0, ∀n ≥ 1.

En faisant tendre n vers +∞ on obtient

sup
λ∈S +

(λg)(x) = +∞.
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- 2ème cas : si x ∈ g−1(−S ) c’est-à-dire ig−1(−S )(x) = 0 alors

g(x) ∈ −S autrement dit −g(x) ∈ S . Ainsi, pour tout λ ∈ S +,

〈λ,−g(x)〉 ≥ 0,

c’est-à-dire

〈λ, g(x)〉 ≤ 0

et donc

sup
λ∈S +

(λg)(x) = 0,

car 0Y∗ ∈ Y∗.

Vérifions maintenant (ii).

Montrons que Kg est un cône. Soit (x∗, r) ∈ Kg et t > 0. Il existe λ ∈ S + tel que

(λg)∗(x∗) ≤ r et de plus, on a

(tλg)∗(tx∗) = sup
x∈X
{〈tx∗, x〉 − tλg(x)}

= t sup
x∈X
{〈x∗, x〉 − λg(x)}

= t(λg)∗(x∗).

Par conséquent, (tλg)∗(tx∗) = t(λg)∗(x∗) ≤ tr. Il vient que t(x∗, r) ∈ Kg car tλ ∈ S + et par

suite, Kg est un cône.

Montrons que Kg est convexe. Pour cela, il suffit de montrer qu’il est stable par l’addition.

Soient (x∗1, r1), (x∗2, r2) ∈ Kg, il existe donc λ1, λ2 ∈ S + tels que

(x∗1, r1) ∈ epi(λ1g)∗ et (x∗2, r2) ∈ epi(λ2g)∗,

c’est-à-dire

(λ1g)∗(x∗1) ≤ r1 et (λ2g)∗(x∗2) ≤ r2.

Pour tout x ∈ X, on a

〈x∗1 + x∗2, x〉 − (λ1 + λ2)g(x) = 〈x∗1, x〉 − λ1g(x) + 〈x∗2, x〉 − λ2g(x)

≤ (λ1g)∗(x∗1) + (λ2g)∗(x∗2)

≤ r1 + r2.

Par conséquent,

sup
x∈X
{〈x∗1 + x∗2, x〉 − (λ1 + λ2)g(x)} ≤ r1 + r2,

d’où

((λ1 + λ2)g)∗(x∗1 + x∗2) ≤ r1 + r2,
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c’est-à-dire

(x∗1 + x∗2, r1 + r2) ∈ epi((λ1 + λ2)g)∗.

Ainsi,

(x∗1, r1) + (x∗2, r2) ∈ Kg,

car (λ1 + λ2) ∈ S + ; d’où Kg est convexe. �

Proposition 3.2. Pour toute fonction g : dom(g) ⊂ X −→ Y, S -convexe par épigraphe

telle que g−1(−S ) , ∅, on a

epiσg−1(−S ) = Kg.

Preuve.

Soit la fonction H : X × Y −→ R ∪ {+∞} définie par

H(x, y) = iS-epig(x,−y)

= iS-epig ◦ L(x, y),

où L : X × Y −→ X × Y est l’application linéaire involutive continue définie par

L(x, y) = (x,−y), ∀(x, y) ∈ X × Y.

On a

H∗(x∗, y∗) = sup
(x,y)∈X×Y

{〈(x∗, y∗), (x, y)〉 − H(x, y)}

= sup
(x,y)∈X×Y

{〈(x∗, y∗), (x, y)〉 − iS-epig(x,−y)}

= sup
(x,−y)∈S-epig

{〈(x∗, y∗), (x, y)〉}

= sup
−y−g(x)∈S

{〈(x∗, y∗), (x, y)〉}

= sup
x∈X,s∈S

{〈(x∗, y∗), (x,−s − g(x))〉}

= sup
x∈X,s∈S

{〈x∗, x〉 + 〈y∗,−s − g(x)〉}

= sup
x∈X,s∈S

{〈x∗, x〉 − 〈y∗, s〉 − 〈y∗, g(x)〉}

= sup
x∈X
{〈x∗, x〉 − inf

s∈S
{〈y∗, s〉 + 〈y∗, g(x)〉}}

=


(y∗g)∗(x∗) si y∗ ∈ S +

+∞ sinon.

Par ailleurs,

epiH = L(S-epig) × [0,+∞[,
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donc H est convexe s.c.i.

De plus, dom(H) = L(S-epi g) et du fait que g−1(−S ) , ∅ alors il existe x ∈ X tel que

−g(x) ∈ S . On en déduit que (x, 0Y) ∈ S-epi g et donc H est propre. Ainsi, H ∈ Γ0(X × Y)

et on a, pour tout x ∈ X,

H(x, 0Y) = H∗∗(x, 0Y)

= sup
x∗∈X∗,λ∈Y∗

{〈x∗, x〉 + 〈λ, 0Y〉 − H∗(x∗, λ)}

= sup
x∗∈X∗,λ∈S +

{〈x∗, x〉 − (λg)∗(x∗)}

= sup
λ∈S +

{
sup
x∗∈X∗
{〈x∗, x〉 − (λg)∗(x∗)}

}
= sup

λ∈S +

(λg)∗∗(x).

Par définition de H, on a aussi

H(x, 0Y) = iS-epig(x, 0Y) = ig−1(−S )(x);

ce qui implique que

ig−1(−S ) = sup
λ∈S +

(λg)∗∗.

Comme g−1(−S ) , ∅ alors il existe x ∈ X tel que

sup
λ∈S +

(λg)∗∗(x) < +∞,

et d’après le Lemme 3.1, on a

epi(ig−1(−S ))∗ = epi(sup
λ∈S +

(λg)∗∗)∗ = co

⋃
λ∈S +

epi(λg)∗∗∗
 .

Rappelons que σg−1(−S ) = i∗g−1(−S ), alors il vient que

epiσg−1(−S ) = co

⋃
λ∈S +

epi(λg)∗∗∗
 = co

⋃
λ∈S +

epi(λg)∗
 ;

d’où,

epiσg−1(−S ) =

⋃
λ∈S +

epi(λg)∗
 = Kg,

car Kg est convexe d’après de la Propriété 3.2-(ii). �

Rappelons un résultat sur l’épigraphe de la conjuguée de la somme de deux fonctions.

75
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Lemme 3.3. [17, Theorem 2.1] Pour toutes fonctions h1, h2 ∈ Γ0(X) telles que

dom(h1) ∩ dom(h2) , ∅, on a

epi(h1 + h2)∗ =
(
epih∗1 + epih∗2

)
.

Nous allons maintenant étudier le cas où les fonctions gu sont S -convexes fermées par

épigraphe.

Renforçons la condition (H ) en considérant la condition suivante :

(H ′)


f ∈ Γ0(X)
F ∩ dom( f ) , ∅
gu est S -convexe fermée par epigraphe, ∀u ∈ U.

Proposition 3.3. Supposons que (H ′) est vérifiée. Alors, les assertions suivantes sont

équivalentes :

(i) inf (RP) = max (Q),

(ii)
⋃
u∈U

(epi f ∗ + Kgu) est convexe ω∗-fermé par rapport à {0X∗} × R.

Preuve.

Puisque F , ∅, on a Fu = g−1
u (−S ) , ∅, pour tout u ∈ U. D’après la Proposition 3.2, on a

epiσFu = epii∗Fu
= Kgu , ∀u ∈ U.

En utilisant le Lemme 3.3, on a pour tout u ∈ U,

epi( f + iFu)
∗ = (epi f ∗ + epii∗Fu

)

= (epi f ∗ + epii∗Fu
)

= (epi f ∗ + Kgu)

= (epi f ∗ + Kgu).

Par conséquent, ⋃
u∈U

epi( f + iFu)
∗ =

⋃
u∈U

(epi f ∗ + Kgu).

On conclut en utilisant le Corollaire 3.1. �

3.3 Dualité forte robuste

Dans cette section, à l’aide du problème (Q), nous établissons la dualité forte robuste du

problème incertain (P).
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Pour chaque u ∈ U, on associe au problème (Pu) son dual lagrangien :

sup
λ

inf
x∈X
{ f (x) + λgu(x)} s.l.c λ ∈ S +. (Du)

Le dual ”optimiste” du problème incertain (P) ([7], [16], [36], [43]) est défini par :

sup
(u,λ)

inf
x∈X
{ f (x) + λgu(x)} s.l.c (u, λ) ∈ U × S +. (ODP)

La dualité forte robuste est dite vérifiée pour le problème convexe conique incertain (P) si

la valeur de la contrepartie robuste coı̈ncide avec celle du dual optimiste où cette dernière

est atteinte. Autrement dit, la dualité forte robuste est vérifiée si :

inf (RP) = max (ODP). (3.2)

Cette terminologie de dualité forte robuste a été introduite dans [43]. Aussi, on rencontre

cette notion dans [7] et [36] sous le nom ”primal worst eqals dual best”.

Proposition 3.4. La valeur du dual optimiste est toujours plus petite que la pire valeur

c’est-à-dire :

sup (ODP) ≤ sup (Q). (3.3)

Preuve.

La dualité faible lagrangienne entre (Pu) et (Du) pour chaque u ∈ U donne

sup
λ∈S +

inf
x∈X
{ f (x) + λgu(x)} ≤ inf (Pu).

En prenant le sup sur U, on obtient

sup (ODP) = sup
λ∈S +,u∈U

inf
x∈X
{ f (x) + λgu(x)} ≤ sup

u∈U
inf (Pu) = sup (Q).

�

Proposition 3.5. Si la dualité forte robuste est vérifiée, alors

inf (RP) = max (Q).

Preuve.

D’après la Proposition 3.1, on a

sup (Q) ≤ inf (RP)

et la Proposition 3.4 donne

sup (ODP) ≤ sup (Q).
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Ces deux propositions couplées à la dualité forte robuste nous permettent d’affirmer que

max (ODP) = sup (Q) = inf (RP).

Il existe donc (u, λ) ∈ U × S + tel que

inf
x∈X
{ f (x) + λgu(x)} = inf (RP) = sup (Q) ≥ inf(Pu) ≥ inf

x∈X
{ f (x) + λgu(x)}.

Par conséquent,

inf(Pu) = sup (Q) = sup
u∈U
{inf(Pu)} = inf (RP).

D’où,

sup (Q) = max (Q) = inf (RP).

�

Dans le but d’obtenir la dualité forte robuste, nous rappelons deux résultats de dualité

épigraphique.

Lemme 3.4. [15, Theorem 8.3] Supposons que f ∈ Γ0(X), g : dom(g) ⊂ X −→ Y est S -

convexe fermée par épigraphe et g−1(−S )
⋂

dom( f ) , ∅. Alors, les assertions suivantes

sont équivalentes :

(i) inf
g(x)∈(−S )

{ f (x) − 〈x∗, x〉} = max
λ∈S +

inf
g(x)∈(−S )

{ f (x) − 〈x∗, x〉 + λg(x)}, ∀x∗ ∈ X∗,

(ii)
⋃
λ∈S +

epi( f + λg)∗ est ω∗-fermé.

Lemme 3.5. [29, Corollary 5] Supposons que f ∈ Γ0(X), g : dom(g) ⊂ X −→ Y est S -

convexe fermée par épigraphe et g−1(−S )
⋂

dom( f ) , ∅. Alors, les assertions suivantes

sont équivalentes :

(i) inf
g(x)∈(−S )

{ f (x)} = max
λ∈S +

inf
g(x)∈(−S )

{ f (x) + λg(x)},

(ii)
⋃
λ∈S +

epi( f + λg)∗ est ω∗-fermé par rapport à {0X∗} × R.

Proposition 3.6. Supposons que (H ′) est vérifiée et que pour tout u ∈ U, l’ensemble⋃
λ∈S +

epi( f + λgu)∗ est ω∗-fermé par rapport à {0X∗} × R ; alors,

sup (ODP) = sup (Q).

Preuve.

Pour chaque u ∈ U, en appliquant le Lemme 3.5 à la fonction gu, on obtient

inf
x∈Fu
{ f (x)} = max

λ∈S +
inf

gu(x)∈(−S )
{ f (x) + λgu(x)}.
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En prenant le supremum sur U, on obtient :

sup (Q) = sup (ODP).

�

Remarque 3.1. Considérons l’exemple 3.1. Du fait que la condition de qualification de

Slater est vérifiée, en se référant par exemple à la Remarque 4.3 de [23] on peut en déduire

que l’ensemble
⋃
λ≥0

epi( f + λgu)∗ est fermé. Ainsi, concernant toujours l’exemple 3.1, il

résulte de la Proposition 3.6, que

sup (Q) = sup (ODP),

et donc

sup (ODP) < inf (RP).

Notons par

Argmin(Q) := {u ∈ U : inf (Pu) = sup (Q)},

l’ensemble des solutions optimales de (Q).

Théorème 3.2. Supposons qu’en plus de la condition (H ), les conditions suivantes sont

aussi vérifiées :⋃
u∈U

epi( f + iFu)
∗ est convexe ω∗-fermé par rapport à {0X∗} × R, (3.4)

∃ u ∈ Argmin(Q) :


gu est S -convexe fermée par épigraphe

⋃
λ∈S +

epi( f + λgu)∗ est ω∗-fermé par rapport à {0X∗} × R.
(3.5)

Alors, la dualité forte robuste est vérifiée.

Preuve.

D’après le Corollaire 3.1 et la condition (3.4), on a :

inf (RP) = max (Q);

il existe donc u ∈ U vérifiant (3.5) tel que

inf (RP) = max (Q) = inf(Pu).

Il résulte du Lemme 3.5 que

inf (RP) = inf(Pu) = max(Du)
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et par définition du dual optimiste, on a

inf (RP) = max(Du) ≤ sup (ODP).

D’après la Proposition 3.4, on a

sup (ODP) ≤ sup (Q),

d’où

sup (ODP) ≤ sup (Q) ≤ inf (RP) = max(Du) ≤ sup (ODP),

et donc

inf (RP) = max (ODP).

�

On dit que la propriété de dualité forte robuste est vérifiée en un point x∗ ∈ X∗ si

inf
x∈F
{ f (x) − 〈x∗, x〉} = max

λ∈S +,u∈U
inf
x∈X
{ f (x) − 〈x∗, x〉 + λgu(x)}. (3.6)

Si x∗ = 0X∗ , on retrouve la propriété de dualité forte robuste.

Si la propriété de dualité forte robuste est vérifiée en tout x∗ ∈ X∗, on dit que la propriété

de dualité forte stable robuste est vérifiée pour le problème (P).

Corollaire 3.3. Supposons que (H ′) est vérifiée et⋃
u∈U

epi f ∗ + Kgu est convexe ω∗-fermé, (3.7)

∀u ∈ U,
⋃
λ∈S +

epi( f + λgu)∗ est ω∗-fermé. (3.8)

Alors, la dualité forte stable robuste est vérifiée.

Preuve.

D’après le Lemme 3.3 et la Proposition 3.2, on a⋃
u∈U

epi( f + iFu)
∗ =

⋃
u∈U

epi f ∗ + Kgu .⋃
u∈U

epi( f + iFu)
∗ est donc convexe ω∗-fermé et par conséquent, d’après le Corollaire 3.2,

pour tout x∗ ∈ X∗,

inf
x∈F
{ f (x) − 〈x∗, x〉} = max

u∈U
inf
x∈Fu
{ f (x) − 〈x∗, x〉}

= inf
x∈Fu
{ f (x) − 〈x∗, x〉} ( pour un certain u ∈ U)

= max
λ∈S +

inf
x∈X
{ f (x) − 〈x∗, x〉 + λgu(x)} (d’après le Lemme 3.4 et (3.8))

= inf
x∈X
{ f (x) − 〈x∗, x〉 + λgu(x)} ( pour un certain λ ∈ S +)

≤ sup
u∈U,λ∈S +

inf
x∈X
{ f (x) − 〈x∗, x〉 + λgu(x)}.
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En appliquant la Proposition 3.1 et la Proposition 3.4 à la fonction f − 〈x∗, .〉, on obtient :

sup
u∈U,λ∈S +

inf
x∈X
{ f (x) − 〈x∗, x〉 + λgu(x)} ≤ inf

x∈F
{ f (x) − 〈x∗, x〉}.

D’où l’égalité

inf
x∈F
{ f (x) − 〈x∗, x〉} = max

λ∈S +,u∈U
inf
x∈X
{ f (x) − 〈x∗, x〉 + λgu(x)}.

�

Remarque 3.2. Si pour tout u ∈ U, la fonction gu : X −→ Y est S -convexe par épigraphe

et continue, alors pour tout λ ∈ S +, la fonction λgu est convexe et continue. Ainsi, à partir

du théorème de Moreau-Rockafellar [54], on déduit que

epi( f + λgu)∗ = epi f ∗ + epi(λgu)∗.

Dans ce cas, la condition

∀u ∈ U,
⋃
λ∈S +

epi( f + λgu)∗ est ω∗-fermé

devient

∀u ∈ U, epi f ∗ + Kgu est ω∗-fermé.

La dualité forte robuste a été établie dans [43, Corollaire 3.1] dans le cas où les fonctions

gu : X −→ Y sont S -convexes par épigraphe et continues sous la condition

epi f ∗ +
⋃
u∈U

Kgu est convexe ω∗-fermé. (3.9)

Proposition 3.7. La condition⋃
u∈U

epi f ∗ + Kgu est convexe ω∗-fermé (3.10)

est plus faible que la condition (3.9).

Preuve.

En effet, on a

epi f ∗ +
⋃
u∈U

Kgu ⊂
⋃
u∈U

(epi f ∗ + Kgu) ⊂

epi f ∗ +
⋃
u∈U

Kgu

 ⊂ co

epi f ∗ +
⋃
u∈U

Kgu

 .
Si la condition (3.9) est vérifiée alors, les inclusions ci-dessus deviennent des égalités et

en particulier, on a ⋃
u∈U

(epi f ∗ + Kgu) = co

epi f ∗ +
⋃
u∈U

Kgu

 ;

ce qui permet de conclure. �
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CHAPITRE 4

Optimisation quadratique à données incertaines

4.1 Introduction

Considérons le problème quadratique suivant :

minimiser
1
2

xT Ax + aT x (QP)

s.l.c
1
2

xT Bx + bT x + β ≤ 0,

Hx = d,

où A ∈ Sn, a, b ∈ Rn, β ∈ R, d ∈ Rm, H est une matrice d’ordre m × n, n,m ∈ N∗ et

(B, b) ∈ Sn × Rn. Lorsque les données a et b sont tous nuls le problème (QP) est dit ho-

mogène et dans le cas contraire il est dit non homogène.

Les problèmes de la forme de (QP) apparaissent dans plusieurs domaines d’applications

tels que la communication sans fil et le traitement du signal ([32], [46], [49], [59]). Le

problème (QP) est largement étudié dans la littérature ([42],[50]) notamment en sa forme

particulière appelée ”trust-region problem” où il n’y a pas de contrainte d’égalité ([25],

[38], [62], [63], [68]). Les caractéristiques du problème qui peuvent être étudiées sont

entre autre le saut de dualité ([24], [62]), la relaxation de la programmation semi-définie

([52], [67]) et la caractérisation de la solution ([39]). Dans les applications concrètes, les

données sont souvent incertaines dues à la modélisation ou aux erreurs de mesure. Par

conséquent, comment développer une approche mathématique capable de traiter les in-

certitudes dans les données devient une question cruciale en optimisation mathématique.

Plusieurs approches ont été développées telles que l’approche déterministe ([9],[10], [11],

[12], [13], [14], [21], [36], [43], [57]) et l’approche stochastique ( [58]).
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Jeyakumar et Li ([37]) ont considéré le problème (QP) sans la contrainte d’égalité avec

des incertitudes au niveau de la contrainte d’inégalité. Ils ont caractérisé dans ce cas les

solutions de la contrepartie robuste.

Nous considérons le problème (QP) avec des données incertaines au niveau de la contrainte

d’inégalité, dans le cas homogène puis dans le cas non homogène. Du faite de la présence

de la contrainte d’égalité, les versions robustes du théorème des alternatives et du S-

lemma établies par Jeyakumar et Li ne nous permettent pas d’établir la caractérisation

des solutions optimales robustes. Nous établissons donc d’autres versions robustes plus

générales de ces résultats. Dans chacun de ces cas, notre objectif est de donner une condi-

tion nécessaire et suffisante permettant de caractériser les solutions de la contrepartie ro-

buste du problème.

4.2 Solution robuste d’un problème quadratique homogène
à données incertaines

Nous considérons le problème d’optimisation quadratique homogène avec une contrainte

d’inégalité soumise à une incertitude et une contrainte d’égalité :

minimiser 1
2 xT Ax

s.l.c


1
2 xT Bx ≤ β

Hx = d,

(UQP)

où A ∈ Sn, β ∈ R, d ∈ Rm, H ∈ Rm×n, n,m ∈ N∗ et B ∈ Sn est incertain et appartient à un

ensemble incertain U = {B0 +µB1 : µ ∈ [µ0, µ1]}, où µ0, µ1 ∈ R : µ0 ≤ µ1 et B0, B1 ∈ S
n.

On définie la contrepartie robuste du problème (UQP) par :

minimiser 1
2 xT Ax

s.l.c


1
2 xT Bx ≤ β, ∀B ∈ U

Hx = d.

(RCQ)

Définition 4.1. x0 est une solution optimale robuste du problème (UQP) si x0 est une

solution optimale du problème (RCQ).

Dans le but de caractériser les solutions robustes du problème (UQP) nous allons établir

un résultat plus général du S-lemma à partir d’un théorème des alternatives robustes.
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Théorème 4.1. Soient A, B0, B1 ∈ S
n, µ0, µ1 ∈ R : µ0 ≤ µ1, α ∈ R, β ∈ R, a0 ∈ R

n et S 0

un sous-espace vectoriel de Rn. Supposons que l’ensemble

{(xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x) : x ∈ a0 + S 0} (4.1)

est convexe.

Alors, exactement une seule des assertions suivantes est vérifiée :

(i) ∃x ∈ a0 + S 0 : 1
2 xT Ax < α, 1

2 xT (B0 + µB1)x < β, ∀ µ ∈ [µ0, µ1],

(ii) 
∃(λ0, λ1) ∈ R2

+ \ {(0, 0)}, ∃ µ ∈ [µ0, µ1] :

∀x ∈ a0 + S 0, λ0

(
1
2 xT Ax − α

)
+ λ1

(
1
2 xT (B0 + µB1)x − β

)
≥ 0.

Preuve.

Montrons que (ii) =⇒ non(i).

Supposons que (ii) est vérifié. Si (i) est vérifié alors

∃x ∈ a0 + S 0, :
1
2

xT Ax − α < 0 et
1
2

xT (B0 + µB1)x − β < 0, ∀µ ∈ [µ1, µ2].

Par suite, ∀(λ0, λ1) ∈ R2
+ \ {(0, 0)},

λ0(
1
2

xT Ax − α) + λ1(
1
2

xT (B0 + µB1)x − β) < 0.

Ce qui contredit (ii), donc non(i) est vérifiée.

Montrons maintenant que non(i) =⇒ (ii).

Pour cela, montrons que l’ensemble

S U = {(xT Ax,max
B∈U

xT Bx) : x ∈ a0 + S 0} + intR2
+

est convexe, où U = {B0 + µB1 : µ ∈ [µ0, µ1]}.

Soient (e0, b0), (e1, b1) ∈ S U , ∃x0, x1 ∈ a0 + S 0, ∃(λ0, γ0), (λ1, γ1) ∈ intR2
+ tels que

xT
0 Ax0 + λ0 = e0 ; max

B∈U
xT

0 Bx0 + γ0 = b0

xT
1 Ax1 + λ1 = e1 ; max

B∈U
xT

1 Bx1 + γ1 = b1

donc 
xT

0 Ax0 < e0 ; max
B∈U

xT
0 Bx0 < b0

xT
1 Ax1 < e1 ; max

B∈U
xT

1 Bx1 < b1

(4.2)
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Comme pour chaque x fixé dans a0 +S 0, l’application µ 7−→ xT (B0 +µB1)x est affine alors

elle atteint son maximum en un point extrémal de [µ0, µ1] qui est µ0 ou µ1. D’où, pour

tout x ∈ a0 + S 0,

max
B∈U

xT Bx = max{xT (B0 + µ0B1)x, xT (B0 + µ1B1)x}.

Par conséquent, le système (4.2) devient
xT

0 Ax0 < e0 ; xT
0 (B0 + µ0B1)x0 < b0 ; xT

0 (B0 + µ1B1)x0 < b0

xT
1 Ax1 < e1 ; xT

1 (B0 + µ0B1)x1 < b1 ; xT
1 (B0 + µ1B1)x1 < b1,

d’où
(e0, b0, b0) ∈ {

(
xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x

)
: x ∈ a0 + S 0} + intR3

+

(e1, b1, b1) ∈ {
(
xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x

)
: x ∈ a0 + S 0} + intR3

+.

Par hypothèse, l’ensemble

{(xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x) : x ∈ a0 + S 0} + intR3
+

est convexe. Il en résulte que pour tout λ ∈ [0, 1],

λ(e0, b0, b0)+(1−λ)(e1, b1, b1) ∈ {(xT Ax, xT (B0+µ0B1)x, xT (B0+µ1B1)x) : x ∈ a0+S 0}+intR3
+.

D’où, il existe x2 ∈ a0 + S 0 tel que :

xT
2 Ax2 < λe0 + (1 − λ)e1

xT
2 (B0 + µ0B1)x2 < λb0 + (1 − λ)b1

xT
2 (B0 + µ1B1)x2 < λb0 + (1 − λ)b1,

ce qui implique que 
xT

2 Ax2 < λe0 + (1 − λ)e1

max
B∈U

xT
2 Bx2 < λb0 + (1 − λ)b1.

Ainsi, λ(e0, b0) + (1 − λ)(e1, b1) ∈ S U , ce qui signifie que S U est convexe.

Comme (i) n’est pas vérifiée, alors (2α, 2β) < S U . En appliquant le théorème de séparation

entre {(2α, 2β)} et S U , on a :

∃(λ0, λ1) ∈ R2
+ \ {(0, 0)} : ∀x ∈ a0 + S 0, λ0(xT Ax) + λ1 max

B∈U
xT Bx ≥ 2αλ0 + 2βλ1.
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Par suite,

λ0(
1
2

xT Ax − α) + λ1(
1
2

max
B∈U

xT Bx − β) ≥ 0.

Comme

max
B∈U

xT Bx = max{xT (B0 + µ0B1)x, xT (B0 + µ1B1)x}

alors

∀x ∈ a0+S 0,
1
2

max{xT (λ0A+λ1(B0+µ0B1))x, xT (λ0A+λ1(B0+µ1B1))x}−(λ0α+λ1β) ≥ 0.

Par conséquent, le système

x ∈ a0 + S 0

1
2 xT (λ0A + λ1(B0 + µ0B1))x < λ0α + λ1β

1
2 xT (λ0A + λ1(B0 + µ1B1))x < λ0α + λ1β

n’a pas de solution. D’après le Théorème 1.5, il existe (δ0, δ1) ∈ R2
+ \ {(0, 0)} tel que

∀x ∈ a0 + S 0, δ0

(
1
2

xT (λ0A + λ1(B0 + µ0B1))x − λ0α + λ1β

)
+

δ1

(
1
2

xT (λ0A + λ1(B0 + µ1B1))x − λ0α + λ1β

)
≥ 0;

c’est-à-dire,

∀x ∈ a0 + S 0, λ̄0

(
1
2

xT Ax − α
)

+ λ̄1

(
1
2

xT (B0 + µB1)x − β
)
≥ 0,

où

λ̄0 = λ0(δ0 + δ1), λ̄1 = λ1(δ0 + δ1) et µ =
δ0µ0 + δ1µ1

δ0 + δ1
.

Par construction, on a (λ̄0, λ̄1) ∈ R2
+ \ {(0, 0)} et µ ∈ [µ0, µ1].

Finalement,

∃(λ̄0, λ̄1) ∈ R2
+ \ {(0, 0)}, ∃ µ ∈ [µ0, µ1] :

∀x ∈ a0 + S 0, λ̄0

(
1
2

xT Ax − α
)

+ λ̄1

(
1
2

xT (B0 + µB1)x − β
)
≥ 0.

D’où (ii). �

On déduit du Théorème 4.1 une version robuste du S -lemma.

Corollaire 4.1. Soient A, B0, B1 ∈ S
n, α ∈ R, β ∈ R, a0 ∈ R

n, S 0 un sous-espace vectoriel

de Rn et µ0, µ1 ∈ R : µ0 ≤ µ1. Supposons que l’ensemble

{(xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x) : x ∈ a0 + S 0}

est convexe et qu’il existe x0 ∈ a0 + S 0 tel que 1
2 xT

0 (B0 + µB1)x0 − β < 0, ∀µ ∈ [µ0, µ1].

Alors, les assertions suivantes sont équivalentes :
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(i) x ∈ a0 + S 0,
1
2

xT (B0 + µB1)x − β ≤ 0, ∀µ ∈ [µ0, µ1] =⇒
1
2

xT Ax − α ≥ 0,

(ii) ∃λ ≥ 0, ∃µ ∈ [µ0, µ1] : ∀x ∈ a0 + S 0,
1
2

xT Ax − α + λ
[1
2

xT (B0 + µB1)x − β
]
≥ 0.

Preuve.

Si (ii) est vérifiée, on a

1
2

xT Ax − α ≥ −λ
[1
2

xT (B0 + µ̄B1)x − β
]
, ∀x ∈ a0 + S 0.

Soit x ∈ a0 + S 0 tel que

1
2

xT (B0 + µB1)x − β ≤ 0, ∀µ ∈ [µ0, µ1],

en particulier, pour µ = µ̄, on a

1
2

xT Ax − α ≥ −λ
[1
2

xT (B0 + µ̄B1)x − β
]
≥ 0

et (i) est vérifiée.

Il reste à montrer que (i) =⇒ (ii).

Supposons que (i) est vérifiée. Il n’existe donc pas de x ∈ a0 + S 0 tel que
1
2 xT (B0 + µB1)x − β ≤ 0, ∀µ ∈ [µ0, µ1]

1
2 xT Ax − α < 0;

ce qui veut dire que le système

x ∈ a0 + S 0

1
2 xT (B0 + µB1)x − β < 0, ∀µ ∈ [µ0, µ1]

1
2 xT Ax − α < 0,

n’a pas de solutions. D’après le Théorème 4.1, ∃(λ0, λ1) ∈ R2
+ \ {(0, 0)}, ∃µ̄ ∈ [µ0, µ1] :

∀x ∈ a0 + S 0, λ0

(
1
2

xT Ax − α
)

+ λ1

(
1
2

xT (B0 + µ̄B1)x − β
)
≥ 0.

Si λ0 = 0 alors λ0 , 0 et on a

∀x ∈ a0 + S 0, λ1

(
1
2

xT (B0 + µ̄B1)x − β
)
≥ 0,

en particulier, pour x = x0,

λ1

(
1
2

xT
0 (B0 + µ̄B1)x0 − β

)
≥ 0;
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ce qui contredit l’hypothèse

1
2

xT (B0 + µB1)x − β < 0, ∀µ ∈ [µ0, µ1].

Par conséquent, λ0 , 0 et on en déduit que

∀x ∈ a0 + S 0,
1
2

xT Ax − α +
λ1

λ0

(
1
2

xT (B0 + µ̄B1)x − β
)
≥ 0.

Il existe donc λ ∈ R+, µ ∈ [µ0, µ1] tels que

∀x ∈ a0 + S 0,
1
2

xT Ax − α + λ

(
1
2

xT (B0 + µB1)x − β
)
≥ 0, d’où (ii).

�

Nous allons maintenant caractériser les solutions optimales robustes du problème (UQP).

Considérons F = {x ∈ Rn : 1
2 xT Bx ≤ β, ∀B ∈ U et Hx = d}.

Théorème 4.2. Soient a0 = x̄ ∈ F, c’est-à-dire une solution admissible robuste de (UQP)

et S 0 = ker H. Supposons que :

∃x0 ∈ a0 + S 0 :
1
2

xT
0 (B0 + µB1)x0 − β < 0, ∀µ ∈ [µ0, µ1]

et que l’ensemble

{(xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x) : x ∈ a0 + S 0} est convexe.

Alors, x̄ est une solution optimale robuste du problème (UQP) si et seulement s’il existe

λ ≥ 0, µ̄ ∈ [µ0, µ1] tels que

λ
[

1
2 x̄T (B0 + µ̄B1)x̄ − β

]
= 0

∃y ∈ Rm : (A + λ(B0 + µ̄B1))x̄ + HT y = 0

zT (A + λ(B0 + µ̄B1))z ≥ 0, ∀z ∈ ker H.

(4.3)

Preuve.

Soient x̄ une solution optimale robuste du problème (UQP) et

S 0 = ker H := {x ∈ Rn : Hx = 0} . On a

x ∈ x̄ + S 0,
1
2

xT (B0 + µB1)x ≤ β, ∀µ ∈ [µ0, µ1] =⇒
1
2

xT Ax ≥
1
2

x̄T Ax̄.

Soit α = 1
2 x̄T Ax̄. D’après le Corollaire 4.1

∃λ ≥ 0, ∃µ̄ ∈ [µ0, µ1] : ∀x ∈ a0 + S 0,
1
2

xT Ax − α + λ
[1
2

xT (B0 + µ̄B1)x − β
]
≥ 0; (4.4)
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en particulier, pour x = x̄, on a

λ
[1
2

x̄T (B0 + µ̄B1)x̄ − β
]
≥ 0,

comme x̄ vérifie les contraintes du problème (RCQ), on a aussi

1
2

x̄T (B0 + µ̄B1)x̄ − β ≤ 0.

On en déduit que

λ
[1
2

x̄T (B0 + µ̄B1)x̄ − β
]

= 0.

D’où, d’après (4.4), la fonction hµ̄ : x̄ + S 0 → R+ définie par

hµ̄(x) =
1
2

xT Ax − α + λ
[
xT (B0 + µ̄B1)x − β

]
,

atteint son minimum en x̄ sur x̄ + S 0.

Comme x̄ + S 0 = {x ∈ Rn : Hx = d}, alors la condition nécessaire d’optimalité de hµ̄ sur

x̄ + S 0 est :
∃y ∈ Rm : ∇hµ̄(x̄) + HT y = 0 (condition de 1er ordre)

zT∇2hµ̄(x̄)z ≥ 0, ∀z ∈ ker H (condition de 2nd ordre);

c’est-à-dire 
∃y ∈ Rm : (A + λ(B0 + µ̄B1))x̄ + HT y = 0

zT (A + λ(B0 + µ̄B1))z ≥ 0, ∀z ∈ ker H.

En récapitulatif, x̄ vérifie : il existe λ ≥ 0, µ̄ ∈ [µ0, µ1] tels que

λ
[

1
2 x̄T (B0 + µ̄B1)x̄ − β

]
= 0

∃y ∈ Rm : (A + λ(B0 + µ̄B1))x̄ + HT y = 0

zT (A + λ(B0 + µ̄B1))z ≥ 0, ∀z ∈ ker H.

Inversement, soit x̄ ∈ F et supposons qu’il existe λ ≥ 0, µ̄ ∈ [µ0, µ1] tels que (4.3) soit

vérifié.

Soit la fonction hµ̄ : Rn → R définie par

hµ̄(x) =
1
2

xT Ax − α + λ
[
xT (B0 + µ̄B1)x − β

]
.

Pour tout x ∈ F, on a

hµ̄(x) = hµ̄(x̄) + (x − x̄)T∇hµ̄(x̄) +
1
2

(x − x̄)T∇2hµ̄(x̄)(x − x̄).
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Comme H(x − x̄) = Hx − Hx̄ = d − d = 0 alors, d’après le système (4.3),

1
2

(x − x̄)T∇2hµ̄(x̄)(x − x̄) =
1
2

(x − x̄)T (A + λ(B0 + µ̄B1))(x − x̄) ≥ 0.

De plus, d’après toujours le système (4.3),

(x− x̄)T∇hµ̄(x̄) = (x− x̄)T ((A + λ(B0 + µ̄B1))x̄) = (x− x̄)T (−HT y) = ((−yT H)(x− x̄))T = 0.

Par suite, on a hµ̄(x) − hµ̄(x̄) ≥ 0, ce qui implique que

1
2

xT Ax + λ(
1
2

xT (B0 + µ̄B1)x − β) −
1
2

x̄T Ax̄ − λ(
1
2

x̄T (B0 + µ̄B1)x̄ − β) ≥ 0,

d’où

1
2

xT Ax ≥ −λ(
1
2

xT (B0 + µ̄B1)x − β) +
1
2

x̄T Ax̄ + λ(
1
2

x̄T (B0 + µ̄B1)x̄ − β).

On a

λ(
1
2

x̄T (B0 + µ̄B1)x̄ − β) = 0,

d’après le système (4.3) et comme x est une solution admissible robuste de (UQP) alors

λ(
1
2

xT (B0 + µ̄B1)x − β) ≤ 0.

Par conséquent,
1
2

xT Ax ≥
1
2

x̄T Ax̄

et donc, x̄ est une solution optimale robuste de (UQP). �

Nous faisons remarquer que la caractérisation des solutions optimales robustes des problèmes

quadratiques homogènes incertains donnés dans ([37]) est un cas particulier du Théorème

4.2.

Corollaire 4.2. Supposons que H := 0, d = 0 et β > 0. De plus, supposons que l’ensemble

{(xT Ax, xT (B0 + µ0B1)x, xT (B0 + µ1B1)x) : x ∈ Rn} est convexe.

Alors, x̄ est une solution optimale robuste du problème (UQP) si et seulement s’il existe

λ ≥ 0, µ̄ ∈ [µ0, µ1] tels que 

λ
[

1
2 x̄T (B0 + µ̄B1)x̄ − β

]
= 0

(A + λ(B0 + µ̄B1))x̄ = 0

(A + λ(B0 + µ̄B1)) � 0.

(4.5)

Preuve.

Il suffit de prendre H = 0, d = 0 et β > 0 dans le Théorème 4.2. �
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4.3 Solutions robustes d’un problème quadratique non
homogène à données incertaines

Nous considérons dans cette partie le problème suivant :

minimiser
1
2

xT Ax + aT x (UNH)

s.l.c
1
2

xT Bx + bT x + β ≤ 0,

Hx = d,

où A ∈ Sn, a, b ∈ Rn, β ∈ R, d ∈ Rm, H est une matrice d’ordre m × n, n,m ∈ N∗ et

(B, b) ∈ Sn × Rn est incertain et appartient à un ensemble incertain V = V0 × V1 avec

V0 = {B0 + µB1 : µ ∈ [µ0, µ1]},V1 = {b0 + δb1 : δ ∈ [δ0, δ1]} où µ0, µ1 ∈ R : µ0 ≤ µ1,

δ0, δ1 ∈ R : δ0 ≤ δ1, B0, B1 ∈ S
n et b0, b1 ∈ R

n.

La contrepartie robuste du problème (UNH) est :

minimiser
1
2

xT Ax + aT x (RCNH)

s.l.c
1
2

xT Bx + bT x + β ≤ 0, ∀(B, b) ∈ V,

Hx = d.

Soient α ∈ R, a0 ∈ R
n, S 0 sous-espace vectoriel de Rn et

Ω =


(x

t

)T

P
(
x
t

)
,

(
x
t

)T

Q0

(
x
t

)
,

(
x
t

)T

Q1

(
x
t

) : (x, t) ∈ S 0 × R

 ,
un ensemble avec

P =

(
A a
aT 2α

)
=

 A (Aa0 + a)

(Aa0 + a)T 2(1
2aT

0 Aa0 + aT a0 + α)

 ,

Q0 =


B0 + µ0B1 (B0 + µ0B1)a0 + b0 + δ0b1

((B0 + µ0B1)a0 + b0 + δ0b1)T 2
(

1
2aT

0 (B0 + µ0B1)a0 + (b0 + δ0b1)T a0 + β
)


et

Q1 =


B0 + µ1B1 (B0 + µ1B1)a0 + b0 + δ1b1

((B0 + µ1B1)a0 + b0 + δ1b1)T 2
(

1
2aT

0 (B0 + µ1B1)a0 + (b0 + δ1b1)T a0 + β
)
 .
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Théorème 4.3. Supposons que l’ensemble Ω est convexe. Alors, les assertions suivantes

sont équivalentes :

(i) 1
2 max

B∈V0
xT Bx + max

b∈V1
bT x + β ≤ 0, x ∈ a0 + S 0 =⇒

1
2

xT Ax + aT x + α ≥ 0,

(ii)

∃(λ0, λ1) ∈ R2
+ \ {(0, 0)},∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1] : ∀x ∈ a0 + S 0,

λ0

(
1
2

xT Ax + aT x + α

)
+ λ1

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≥ 0.

Preuve.

Il est clair que (ii) =⇒ (i). Montrons que (i) =⇒ (ii).

(i) entraine que le système suivant n’a pas de solution sur a0 + S 0 :

1
2 xT Ax + aT x + α < 0

1
2 max

B∈V0
xT Bx + max

b∈V1
bT x + β < 0

x ∈ a0 + S 0.

(4.6)

(4.6) est équivalent à :

1
2 xT Ax + aT x + α < 0

1
2 xT Bx + bT x + β < 0, ∀(B, b) ∈ V

x ∈ a0 + S 0.

De plus, le système (4.6) est équivalent au système

1
2 (a0 + x)T A(a0 + x) + aT (a0 + x) + α < 0

1
2 (a0 + x)T B(a0 + x) + bT (a0 + x) + β < 0, ∀(B, b) ∈ V

x ∈ S 0,

(4.7)

en ce sens que si x′, x sont respectivement solutions optimales de (4.7) et de (4.6) alors

x = a0 + x′. Par suite, le système (4.7) n’a pas de solutions si et seulement si le système

(4.6) n’a pas de solution.
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Une réécriture du système (4.7) donne le système suivant :

1
2 xT Ax + aT x + α < 0

1
2 xT Bx + b

T
x + β < 0, ∀(B, b) ∈ V

x ∈ S 0

avec a = Aa0 + a , α = 1
2aT

0 Aa0 + aT a0 + α,

b = Ba0 + b , β = 1
2aT

0 Ba0 + bT a0 + β.

(4.8)

Montrons que le système homogène suivant issu de l’homogénéisation du système (4.8)

n’a pas de solutions sur S 0 × R :

1
2 xT Ax + taT x + αt2 < 0

1
2 xT Bx + tb

T
x + βt2 < 0, ∀(B, b) ∈ V

x ∈ S 0, t ∈ R

avec a = Aa0 + a , α = 1
2aT

0 Aa0 + aT a0 + α,

b = Ba0 + b , β = 1
2aT

0 Ba0 + bT a0 + β.

(4.9)

Supposons qu’il existe (x0, t0) ∈ S 0 × R tel que :
1
2 xT

0 Ax0 + t0aT x0 + αt2
0 < 0

1
2 xT

0 Bx0 + t0b
T

x0 + βt2
0 < 0, ∀(B, b) ∈ V.

Si t0 , 0, en divisant les inégalités par t2
0, on obtient :

1
2

(
x0

t0

)T

A
(

x0

t0

)
+ aT

(
x0

t0

)
+ α < 0

1
2

(
x0

t0

)T

B
(

x0

t0

)
+ b

T
(

x0

t0

)
+ β < 0, ∀(B, b) ∈ V,

comme
x0

t0
∈ S 0, alors le système (4.8) a une solution, ce qui est une contradiction car le

système (4.8) n’a pas de solutions sur S 0.
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Si t0 = 0, alors x0 vérifie le système suivant :
1
2 xT

0 Ax0 < 0

1
2 xT

0 Bx0 < 0, ∀B ∈ V0.

Posons xn = nx0, n ∈ N, on a :

lim
n→+∞

1
2

xT
n Axn = lim

n→+∞

1
2

xT
n Axn + aT xn + α = −∞

et

lim
n→+∞

1
2

xT
n Bxn = lim

n→+∞

1
2

xT
n Bxn + b

T
xn + β = −∞, ∀(B, b) ∈ V.

On observe que pour n assez grand, xn est une solution du système (4.8), ce qui est une

contradiction. On conclut que le système (4.9) n’a pas de solutions sur S 0 ×R c’est-à-dire

que le système

1
2 xT Ax + t(Aa0 + a)T x + ( 1

2aT
0 Aa0 + aT a0 + α)t2 < 0

1
2 xT (B0 + µB1)x + t

[
(B0 + µB1)a0 + (b0 + δb1)

]T x + ( 1
2aT

0 Ba0 + (b0 + δb1)T a0 + β)t2 < 0,
∀(µ, δ) ∈ [µ0, µ1] × [δ0, δ1]

x ∈ S 0, t ∈ R
(4.10)

n’a pas de solutions sur S 0 × R.

Si µ0 < µ1, Soient :

D =

(
A a
aT 2α

)
=

 A (Aa0 + a)

(Aa0 + a)T 2(1
2aT

0 Aa0 + aT a0 + α)

 ,

M0 =


B0 B0a0 + b0 +

δ0µ1−δ1µ0
µ1−µ0

b1(
B0a0 + b0 +

δ0µ1−δ1µ0
µ1−µ0

b0

)T
2
(

1
2aT

0 B0a0 +
(
b0 +

δ0µ1−δ1µ0
µ1−µ0

b1

)T
a0 + β

)


et

M1 =


B1 B1a0 + δ1−δ0

µ1−µ0
b1(

B1a0 + δ1−δ0
µ1−µ0

b1

)T
2
(

1
2aT

0 B1a0 + δ1−δ0
µ1−µ0

bT
1 a0

)
.


D’après (4.10), le système suivant

1
2

x
t

T

D

x
t

 < 0

1
2

x
t

T

(M0 + µM1)

x
t

 < 0, ∀µ ∈ [µ0, µ1],
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n’a pas de solutions sur S 0 × R.

De plus, on a :
(x

t

)T

D
(
x
t

)
,

(
x
t

)T

(M0 + µ0M1)
(
x
t

)
,

(
x
t

)T

(M0 + µ1M1)
(
x
t

) : (x, t) ∈ S 0 × R

 = Ω

est convexe par hypothèse, donc d’après le Théorème 4.1, ∃(λ0, λ1) ∈ R2
+ \ {(0, 0)},

∃µ ∈ [µ0, µ1] : ∀(x, t) ∈ S 0 × R,

λ0

1
2

(
x
t

)T

D
(
x
t

) + λ1

1
2

(
x
t

)T

(M0 + µM1)
(
x
t

) ≥ 0. (4.11)

On a

(4.11)⇐⇒ λ0

(
1
2

xT Ax + t(Aa0 + a)T x + (
1
2

aT
0 Aa0 + aT a0 + α)t2

)
+

λ1

(
1
2

xT (B0 + µB1)x + t
[
(B0 + µB1)a0 + (b0 + δb1)

]T x + (
1
2

aT
0 Ba0 + (b0 + δb1)T a0 + β)t2

)
≥ 0

avec

δ =
(µ1 − µ)δ0 + (µ − µ0)δ1

(µ1 − µ0)
∈ [δ0, δ1].

Pour t = 1, on a

λ0

(
1
2

xT Ax + (Aa0 + a)T x + (
1
2

aT
0 Aa0 + aT a0 + α)

)
+

λ1

(
1
2

xT (B0 + µB1)x +
[
(B0 + µB1)a0 + (b0 + δb1)

]T x + (
1
2

aT
0 Ba0 + (b0 + δb1)T a0 + β)

)
≥ 0

ce qui est équivalent à

λ0

(
1
2

(x + a0)T A(x + a0) + aT (x + a0) + α

)
+

λ1

(
1
2

(x + a0)T (B0 + µB1)(x + a0) + (b0 + δb1)T (x + a0) + β

)
≥ 0.

Par suite,

∃(λ0, λ1) ∈ R2
+ \ {(0, 0)} , ∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1] : ∀x ∈ a0 + S 0,

λ0

(
1
2

xT Ax + aT x + α

)
+ λ1

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≥ 0.

Si µ0 = µ1, posons

D =

 A (Aa0 + a)

(Aa0 + a)T 2(1
2aT

0 Aa0 + aT a0 + α)

 ,
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M0 =


B0 + µ0B1 (B0 + µ0B1)a0 + b0

((B0 + µ0B1)a0 + b0)T 2
(

1
2aT

0 (B0 + µ0B1)a0 + bT
0 a0 + β

)


et

M1 =

0n×n b1

bT
1 2bT

1 a0

 .
Dans ce cas, on a bien

D = P, (M0 + δ0M1) = Q0, (M0 + δ1M1) = Q1,

d’où l’ensemble
(x

t

)T

D
(
x
t

)
,

(
x
t

)T

(M0 + δ0M1)
(
x
t

)
,

(
x
t

)T

(M0 + δ1M1)
(
x
t

) : (x, t) ∈ S 0 × R


est convexe par hypothèse.

Comme

(4.10) =⇒



1
2

x
t

T

D

x
t

 < 0

1
2

x
t

T

(M0 + δM1)

x
t

 < 0, ∀δ ∈ [δ0, δ1],

alors d’après le Théorème 4.1, ∃(λ0, λ1) ∈ R2
+ \ {(0, 0)} ,∃δ ∈ [δ0, δ1] : ∀(x, t) ∈ S 0 × R,

λ0

1
2

(
x
t

)T

D
(
x
t

) + λ1

1
2

(
x
t

)T

(M0 + δM1)
(
x
t

) ≥ 0.

Pour t = 1, on a

λ0

(
1
2

xT Ax + (Aa0 + a)T x + (
1
2

aT
0 Aa0 + aT a0 + α)

)
+

λ1

(
1
2

xT (B0 + µ0B1)x +
[
(B0 + µ0B1)a0 + (b0 + δb1)

]T x + (
1
2

aT
0 Ba0 + (b0 + δb1)T a0 + β)

)
≥ 0.

Par conséquent,

∃(λ0, λ1) ∈ R2
+ \ {(0, 0)},∃δ ∈ [δ0, δ1] : ∀x ∈ a0 + S 0,

λ0

(
1
2

xT Ax + aT x + α

)
+ λ1

(
1
2

xT (B0 + µ0B1)x + (b0 + δb1)T x + β

)
≥ 0.

�
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Corollaire 4.3. Supposons qu’il existe x0 ∈ a0 + S 0 tel que :

1
2

xT
0 Bx0 + bT x0 + β < 0, ∀(B, b) ∈ V, (4.12)

et que l’ensemble Ω est convexe.

Alors, les assertions suivantes sont équivalentes :

(i) 1
2 max

B∈V0
xT Bx + max

b∈V1
bT x + β ≤ 0, x ∈ a0 + S 0 =⇒

1
2

xT Ax + aT x + α ≥ 0,

(ii)

∃λ ∈ R+,∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1] : ∀x ∈ a0 + S 0,(
1
2

xT Ax + aT x + α

)
+ λ

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≥ 0.

Preuve.

Il suffit de montrer que (i) =⇒ (ii) car il est clair que (ii) =⇒ (i). Supposons que (i) est

vérifié.

D’après le Théorème 4.3, on a

∃(λ0, λ1) ∈ R2
+ \ {(0, 0)},∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1] : ∀x ∈ a0 + S 0,

λ0

(
1
2

xT Ax + aT x + α

)
+ λ1

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≥ 0.

Si λ0 = 0, alors λ1

(
1
2 xT

0 (B0 + µB1)x0 + (b0 + δb1)T x0 + β
)
≥ 0 et d’après (4.12), λ1 = 0,

ce qui contredit le fait que (λ0, λ1) , (0, 0). Par conséquent λ0 , 0 et il en résulte que(
1
2

xT Ax + aT x + α

)
+
λ1

λ0

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≥ 0.

�

Nous allons maintenant caractériser les solutions optimales robustes du problème (UNH).

Théorème 4.4. Soient x̄ une solution admissible robuste du problème (UNH). Supposons

que α = −( 1
2 x̄T Ax̄ + aT x̄), a0 = x̄, S 0 = ker(H) et qu’il existe x0 ∈ a0 + S 0 tel que

1
2

xT
0 Bx0 + bT x0 + β < 0, ∀(B, b) ∈ V, (4.13)

et que l’ensemble
(x

t

)T

P
(
x
t

)
,

(
x
t

)T

Q0

(
x
t

)
,

(
x
t

)T

Q1

(
x
t

) : (x, t) ∈ S 0 × R


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est convexe. Alors, x̄ est une solution optimale robuste du problème (UNH) si et seulement

si : ∃λ ∈ R+,∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1] :

λ
(

1
2 x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
= 0

∃y ∈ Rm : (A + λ(B0 + µB1))x̄ + a + λ(b0 + δb1) + HT y = 0

zT (A + λ(B0 + µB1))z ≥ 0, si Hz = 0.

Preuve.

Soient x̄ une solution optimale robuste du problème (UNH). On a

1
2

max
B∈V0

xT Bx + max
b∈V1

bT x + β ≤ 0, x ∈ x̄ + S 0 =⇒
1
2

xT Ax + aT x + α ≥ 0.

D’après le Corollaire 4.3,

∃λ ∈ R+,∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1], ∀x ∈ x̄ + S 0,

(
1
2

xT Ax + aT x + α

)
+ λ

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≥ 0.

En particulier, pour x = x̄, on a

λ

(
1
2

xT (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
≥ 0.

Comme x̄ vérifie les contraintes du problème (RCNH), on a aussi

1
2

x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β ≤ 0.

On en déduit que

λ

(
1
2

x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
= 0.

Par conséquent, la fonction hµ définie par

hµ(x) =

(
1
2

xT Ax + aT x + α

)
+ λ

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
,

atteint son minimum en x̄ sur x̄ + S 0.

Comme x̄ + S 0 = {x ∈ Rn : Hx = d}, alors la condition nécessaire d’optimalité de hµ sur

x̄ + S 0 est : 
∃y ∈ Rm : ∇hµ(x̄) + HT y = 0

zT∇2hµ(x̄)z ≥ 0, si Hz = 0,
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c’est-à-dire 
∃y ∈ Rm : (A + λ(B0 + µB1))x̄ + a + λ(b0 + δb1) + HT y = 0

zT (A + λ(B0 + µB1))z ≥ 0, si z ∈ ker H.

On déduit que x̄ vérifie :

∃λ ∈ R+,∃µ ∈ [µ0, µ1],∃δ ∈ [δ0, δ1] :

λ
(

1
2 x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
= 0

∃y ∈ Rm : (A + λ(B0 + µB1))x̄ + a + λ(b0 + δb1) + HT y = 0

zT (A + λ(B0 + µB1))z ≥ 0, si z ∈ ker H.

Réciproquement, supposons qu’il existe x̄ ∈ Rn, λ ∈ R+, µ ∈ [µ0, µ1], δ ∈ [δ0, δ1], tels que

λ
(

1
2 x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
= 0

∃y ∈ Rm : (A + λ(B0 + µB1))x̄ + a + λ(b0 + δb1) + HT y = 0

zT (A + λ(B0 + µB1))z ≥ 0, si z ∈ ker H.

(4.14)

Soit

hµ(x) =

(
1
2

xT Ax + aT x
)

+ λ

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
et une solution admissible robuste x de (UNH). On a

hµ(x) = hµ(x̄) + (x − x̄)T∇hµ(x̄) +
1
2

(x − x̄)T∇2hµ(x̄)(x − x̄).

Comme H(x − x̄) = Hx − Hx̄ = 0 alors, d’après le système (4.14),

1
2

(x − x̄)T∇2hµ(x̄)(x − x̄) =
1
2

(x − x̄)T (A + λ(B0 + µB1))(x − x̄) ≥ 0.

De plus,

(x−x̄)T∇hµ(x̄) = (x−x̄)T ((A+λ(B0+µB1))x̄+aT +(b0+δb1)T ) = (x−x̄)T (−HT y) = ((yT H)(x−x̄))T = 0.

Par suite, on a hµ(x) − hµ(x̄) ≥ 0, ce qui implique que

1
2

xT Ax + aT x ≥
1
2

x̄T Ax̄ + aT x̄ + λ

(
1
2

x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
−

λ

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
.
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On a λ
(

1
2 x̄T (B0 + µB1)x̄ + (b0 + δb1)T x̄ + β

)
= 0, d’après le système (4.14) et comme x

est une solution admissible robuste de (UNH) alors

λ

(
1
2

xT (B0 + µB1)x + (b0 + δb1)T x + β

)
≤ 0.

Par conséquent, 1
2 xT Ax + aT x ≥ 1

2 x̄T Ax̄ + aT x̄ et donc x̄ est une solution optimale robuste

de (UNH). �
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Conclusion

L’objet de cette thèse était d’étudier la stabilité d’un problème d’optimisation pa-

ramétrique, la dualité forte robuste pour un problème convexe conique à données incer-

taines et de caractériser les solutions optimales robustes d’un problème quadratique à

données incertaines. La stabilité assure le saut de dualité nul entre la valeur du problème

paramétrique et son dual paramétrique. La dualité forte robuste quant à elle annule le saut

de dualité entre la valeur robuste et la valeur du dual ”optimiste”.

Nous avons commencé par rappeler les notions nécessaires à l’étude de ces problèmes

d’optimisation. En utilisant des techniques de dualité et des conditions d’intériorité, nous

avons établi un résultat très général de stabilité (Théorème 2.1) dans les e.v.t pour un

problème d’optimisation convexe paramétrique. Par le biais de la topologie induite, ce

résultat reste vrai en réduisant l’espace de travail (Théorème 2.2). Ces résultats restent

vrais dans le cas des e.v.n avec la fonction objectif perturbée par une forme linéaire conti-

nue (Théorème 2.3, Théorème 2.4). En utilisant des critères de fermetures, nous obte-

nons le Théorème 2.5 dans les e.v.t.l.c, qui généralise un résultat de Boţ obtenu dans les

e.v.t.H.l.c ([15]). Par un choix judicieux des espaces, nous avons pu établir les versions

duales de ces résultats de stabilité. Un cas particulier d’optimisation convexe paramétrique

est la minimisation du maximum de deux fonctions convexes. Ce problème a fait l’objet

d’étude par une approche de la conjugaison par tranches, en particulier un résultat de

stabilité a été énoncé dans [65, Théorème 7.1]. En utilisant nos résultats de stabilité ci-

dessus, on obtient une généralisation de ce résultat (Théorème 2.11).
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On considère un problème d’optimisation convexe conique à données incertaines,

on introduit la notion de pire valeur et on rappelle la notion bien connue de la valeur ro-

buste. Nous donnons une condition nécessaire et suffisante pour obtenir l’égalité entre la

valeur robuste et la pire valeur, avec exactitude de la pire valeur (Corollaire 3.1). Nous

avons ensuite rappelé la notion de dual ”optimiste” et nous avons remarqué que sa valeur

est toujours inférieure à la pire valeur. On établit d’une part que si la propriété de dualité

forte robuste est vérifiée alors on a l’égalité entre la valeur robuste et la pire valeur (Propo-

sition 3.5), avec exactitude de la pire valeur. D’autre part, on montre que si la pire valeur

est égale à la valeur robuste, avec exactitude de la pire valeur, on a la propriété de dualité

forte robuste moyennant une hypothèse (Théorème 3.2). Nous avons ensuite établi la dua-

lité forte stable robuste (Corollaire 3.3). Notons que Jeyakumar et collaborateurs ([43])

ont établi la propriété de dualité forte pour ce problème avec des données continues, que

nous avons réussi à affaiblir par un critère de fermeture des épigraphes.

L’étude des problèmes d’optimisation quadratique que nous avons développée dans

ce mémoire est une généralisation des travaux de Jeyakumar et Li ([37]). Ces auteurs ont

obtenu dans un cas particulier, une caractérisation des solutions robustes de ces problèmes

via des versions robustes du S-lemma et du théorème des alternatives. Nous avons établi

des versions robustes plus générales du S-lemma (Corollaire 4.1) et du théorème des al-

ternatives (Théorème 4.1). Nous avons, à partir de ces résultats, donné une caractérisation

des solutions optimales robustes du problème quadratique homogène à données incer-

taines, qui généralise celles de Jeyakumar et Li ([37]). Par une homogénéisation, dans le

cas non homogène nous avons obtenu également une caractérisation des solutions opti-

males robustes du problème quadratique non homogène à données incertaines.

Perspectives

L’étude des problèmes paramétriques ouvre la voie à une perspective qui est d’étudier les

problèmes paramétriques sous incertitudes. Il s’agit des problèmes de la forme :

inf Fu(x, y) , s.l.c x ∈ X, (Py)

où X et Y sont deux espaces vectoriels topologiques, y fixé dans Y , U est un ensemble

incertain non vide et pour tout u ∈ U, la fonction Fu : X × Y −→ R est convexe.

On associe au problème (Py) sa contrepartie robuste,

inf sup
u∈U

Fu(x, y), s.l.c x ∈ X (RPy)

et son dual optimiste

sup{〈y∗, y〉 − F∗u(0, y∗)}, s.l.c u ∈ U, y∗ ∈ Y∗. (ODPy)
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La dualité forte robuste que nous avons établi pour les problèmes convexes coniques à

données incertaines est intéressante du faite que le dual optimiste nous donne une infor-

mation sur la valeur robuste du problème initial. Par contre la dualité forte robuste ne nous

donne aucune information sur les solutions optimales robustes. Il serait donc intéressant

d’établir une relation donnant une information sur les solutions optimales robustes. En

perspective, la question de la dualité totale robuste du problème incertain, c’est-à-dire la

situation garantissant l’égalité entre la valeur du dual optimiste et la valeur robuste avec

les deux valeurs atteintes reste posée.

Il est bien connu que le rayon de stabilité est un indicateur de la robustesse. Ainsi une

perspective intéressante serait l’approche du problème quadratique incertain par la notion

de rayon de stabilité.
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[17] R.I. Boţ and G. Wanka. A weaker regularity condition for subdifferential calculus

and fenchel duality in infinite dimensional spaces. Nonlinear Anal. 64, pages 2787–

2804, 2006.

[18] F. Bonnans. Optimisation continue, cours et problèmes corrigés. Dunod, Paris,
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